Zero inflated Poisson {countDM} | R Documentation |
MLE of the zero inflated Poisson distribtion
Description
Evaluates the MLE of the zero inflated Poisson (ZIP) distribtion. The PMF of the ZIP is as follows:
f\left(X=x\mid\alpha,\,\theta\right)=\begin{cases}
\alpha+\left(1-\alpha\right)e^{-\theta}, & x=0\\
\left(1-\alpha\right)\frac{\theta^{x}e^{-\theta}}{x!}, & x=1,2\cdots,
\end{cases}
where \alpha\in(0,1)
denotes the probability of extra zeros and \theta>0
is a Poisson parameter, which is also its mean and variance.
Usage
mle_zip (x, alpha, theta)
Arguments
x |
A vector of (non-negative integer) discrete values. |
theta |
A vector of (non-negative integer) values, |
alpha |
A vector of (non-negative integer) values, |
Details
The function allows to estimate the unknown parameter of the ZIP distribution with standard error of the estimate and model selection measure, the Akaike information criterion (AIC).
Value
mle_zip gives the MLE along with standard error of the estimate and model selction measure AIC.
Author(s)
Muhammad Imran and M.H. Tahir.
R implementation and documentation: Muhammad Imran imranshakoor84@yahoo.com and M.H. Tahir <mht@iub.edu.pk>.
References
Beckett, S., Jee, J., Ncube, T., Pompilus, S., Washington, Q., Singh, A., & Pal, N. (2014). Zero-inflated Poisson (ZIP) distribution: Parameter estimation and applications to model data from natural calamities. Involve, a Journal of Mathematics, 7(6), 751-767.
See Also
Examples
x <- data_sbirth
mle_zip (x, 0.2, 1.5)