Bell {countDM} | R Documentation |
MLE of the Bell distribtion
Description
Evaluates the maximum likelihood estimate of the Bell distribtion. The PMF of the Bell distribution is as follows:
f(X=x\mid\theta)=\frac{\theta^{x}e^{e^{\theta}+1}B_{x}}{x!};\qquad x=0,1,2,\,\dots,
where \theta>0
denotes the Bell parameter and B_{x}
is the Bell number and it is given by
B_{n}=\frac{1}{e}\sum_{k=0}^{\infty}\frac{k^{n}}{k!}.
The Bell number B_{n}
in the above equation is the nth moment of the Poisson distribution with parameter equal to 1.
Usage
bell_mle (x)
mle.bell (x, theta)
Arguments
x |
A vector of (non-negative integer) discrete values. |
theta |
A vector of (non-negative integer) values. |
Details
The function allows to estimate the unknown parameter of the Bell distribution with loglik value using a Newton-Raphson algorithm.
Value
bell_mle gives the maximum liklihood estimate of parameter theta. loglik gives value of the maximised log-likelihood. The mle.bell gives the maximum liklihood estimate with standard error and AIC,
Author(s)
Muhammad Imran and M.H. Tahir.
R implementation and documentation: Muhammad Imran imranshakoor84@yahoo.com and M.H. Tahir <mht@iub.edu.pk>.
References
Castellares, F., Ferrari, S. L., & Lemonte, A. J. (2018). On the Bell distribution and its associated regression model for count data. Applied Mathematical Modelling, 56, 172-185.
See Also
Examples
x <- data_sbirth
bell_mle (x)
mle.bell (x, 1.2)