Touchard polynomials {countDM} | R Documentation |
Touchard polynomials
Description
The function allows to compuate the Touchard polynomial. It is mathematically defined by
T_{x}\left(\theta\right)=\frac{1}{e^{\theta}}\sum_{k=0}^{\infty}\frac{k^{x}}{k!}\theta^{k}.
The first few Touchard polynomials are as follows:
\begin{cases}
\begin{array}{ccccccccc}
T_{0}\left(\theta\right) & = & 1\\
T_{1}\left(\theta\right) & = & \theta\\
T_{2}\left(\theta\right) & = & \theta^{2} & + & \theta\\
T_{3}\left(\theta\right) & = & \theta^{3} & + & 3\theta^{2} & + & \theta\\
T_{4}\left(\theta\right) & = & \theta^{4} & + & 6\theta^{3} & + & 7\theta^{2} & + & \theta.
\end{array}\end{cases}.
Usage
TP (x, theta)
Arguments
x |
A vector of (non-negative integer) discrete values. |
theta |
A vector of (non-negative integer) values. |
Details
The function allows to provide the Touchard polynomials.
Value
TP gives the Touchard polynomials after specifying parameteric value.
Author(s)
Muhammad Imran and M.H. Tahir.
R implementation and documentation: Muhammad Imran imranshakoor84@yahoo.com and M.H. Tahir <mht@iub.edu.pk>.
References
Castellares, F., Lemonte, A. J., & Moreno–Arenas, G. (2020). On the two-parameter Bell–Touchard discrete distribution. Communications in Statistics-Theory and Methods, 49(19), 4834-4852.
Examples
TP (2,3)