predict.cosso {cosso} | R Documentation |
Make predictions or extract coefficients from a cosso model
Description
Make prediction for future observations or extract the model parameters at a particular smoothing parameter.
Usage
## S3 method for class 'cosso'
predict(object,xnew,M,type=c("fit","coefficients","nonzero"),eps=1e-7,...)
Arguments
object |
a cosso object. |
xnew |
matrix of new values for |
M |
a smoothing parameter value. M should be taken between 0 and p. If not provided, a cross-validation procedure will be carried out to select an appropriate value. |
type |
if |
eps |
an effective zero, default is |
... |
additional arguments for predict function. |
Value
The object returned depends on type.
When type="fit"
, predicted
eta
function value will be given at the new design points xnew
.
When type="coefficients"
, three sets of coefficients will be returned.
Intercept |
the estimated intercept. If |
coefs |
the estimated coefficients for kernel representers. |
theta |
the estimated scale parameters for each functional component. |
When type="nonzero"
, a list of the indices of the nonconstant functional components will be returned.
Author(s)
Hao Helen Zhang and Chen-Yen Lin
See Also
Examples
## Gaussian
set.seed(20130310)
x=cbind(rbinom(200,1,.7),matrix(runif(200*7,0,1),nc=7))
y=x[,1]+sin(2*pi*x[,2])+5*(x[,4]-0.4)^2+rnorm(200,0,1)
G.Obj=cosso(x,y,family="Gaussian")
predict.cosso(G.Obj,M=2,type="nonzero")
predict.cosso(G.Obj,xnew=x[1:3,],M=2,type="fit")
## Clean up
rm(list=ls())
## Not run:
## Binomial
set.seed(20130310)
x=cbind(rbinom(200,1,.7),matrix(runif(200*9,0,1),nc=9))
trueProb=1/(1+exp(-x[,1]-sin(2*pi*x[,2])-5*(x[,4]-0.4)^2))
y=rbinom(200,1,trueProb)
B.Obj=cosso(x,y,family="Bin")
f.hat=predict.cosso(B.Obj,xnew=x,M=2,type="fit")
prob.hat=1/(1+exp(-f.hat))
## Clean up
rm(list=ls())
## End(Not run)