AUCest.Rosner {correctedAUC} | R Documentation |
Calculate AUC.c for measurement error based on probit-shift model
Description
Calculate AUC.c for measurement error based on probit-shift model.
Usage
AUCest.Rosner(
datFrame,
sidVar = "subjID",
obsVar = "y",
grpVar = "grp",
repVar = "myrep",
alpha = 0.05)
Arguments
datFrame |
a data frame with at least the following columns:
|
sidVar |
character. variable name for subject id in the data frame |
obsVar |
character. variable name for observations in the data frame |
grpVar |
character. variable name for group indictor in the data frame |
repVar |
character. variable name for replication indictor in the data frame |
alpha |
confidence interval level |
Value
A list of 9 elements:
AUC.obs |
AUC estimated based on the Mann-Whitney statistic. |
AUC.c |
AUC corrected for measurement error based on the probit-shift model. |
ICC.x |
intra-class correlation for cases. |
ICC.y |
intra-class correlation for controls |
mu.mle |
maximum likelihood estimate of |
AUC.obs.low |
lower bound of the |
AUC.obs.upp |
upper bound of the |
AUC.c.low |
lower bound of the |
AUC.c.upp |
upper bound of the |
Author(s)
Bernard Rosner <stbar@channing.harvard.edu>, Shelley Tworoger <nhsst@channing.harvard.edu>, Weiliang Qiu <stwxq@channing.harvard.edu>
References
Rosner B, Tworoger S, Qiu W (2015) Correcting AUC for Measurement Error. J Biom Biostat 6:270. doi:10.4172/2155-6180.1000270
Examples
set.seed(1234567)
tt=genSimDataModelIII(
nX = 100,
nY = 100,
mu = 0.25,
lambda = 0,
sigma.X2 = 1,
sigma.Y2 = 1,
sigma.e.X = 1,
sigma.e.Y = 1)
print(dim(tt$datFrame))
print(tt$datFrame[1:2,1:3])
print(tt$AUC.true)
res = AUCest.Rosner(
datFrame = tt$datFrame,
sidVar = "subjID",
obsVar = "y",
grpVar = "grp",
repVar = "myrep",
alpha = 0.05)
print(res)