tCorpus$lda_fit {corpustools} | R Documentation |
Estimate a LDA topic model
Description
Estimate an LDA topic model using the LDA function from the topicmodels package. The parameters other than dtm are simply passed to the sampler but provide a workable default. See the description of that function for more information
Usage:
## R6 method for class tCorpus. Use as tc$method (where tc is a tCorpus object).
lda_fit(feature, create_feature=NULL, K=50, num.iterations=500, alpha=50/K, eta=.01, burnin=250, context_level=c('document','sentence'), ...)
Arguments
feature |
the name of the feature columns |
create_feature |
optionally, add a feature column that indicates the topic to which a feature was assigned (in the last iteration). Has to be a character string, that will be the name of the new feature column |
K |
the number of clusters |
num.iterations |
the number of iterations |
method |
set method. see documentation for LDA function of the topicmodels package |
alpha |
the alpha parameter |
eta |
the eta parameter#' |
burnin |
The number of burnin iterations |
Value
A fitted LDA model, and optionally a new column in the tcorpus (added by reference)
Examples
if (interactive()) {
tc = create_tcorpus(sotu_texts, doc_column = 'id')
tc$preprocess('token', 'feature', remove_stopwords = TRUE, use_stemming = TRUE, min_freq=10)
set.seed(1)
m = tc$lda_fit('feature', create_feature = 'lda', K = 5, alpha = 0.1)
m
topicmodels::terms(m, 10)
tc$tokens
}