invcov.shrink {corpcor} | R Documentation |
Fast Computation of the Inverse of the Covariance and Correlation Matrix
Description
The functions invcov.shrink
and invcor.shrink
implement an
algorithm to efficiently compute
the inverses of shrinkage estimates of covariance (cov.shrink
)
and correlation (cor.shrink
).
Usage
invcov.shrink(x, lambda, lambda.var, w, verbose=TRUE)
invcor.shrink(x, lambda, w, verbose=TRUE)
Arguments
x |
a data matrix |
lambda |
the correlation shrinkage intensity (range 0-1).
If |
lambda.var |
the variance shrinkage intensity (range 0-1).
If |
w |
optional: weights for each data point - if not specified uniform weights are assumed
( |
verbose |
output status while computing (default: TRUE) |
Details
Both invcov.shrink
and invcor.shrink
rely on
powcor.shrink
. This allows to compute the inverses in
a very efficient fashion (much more efficient than directly inverting
the matrices - see the example).
Value
invcov.shrink
returns the inverse of the output from cov.shrink
.
invcor.shrink
returns the inverse of the output from cor.shrink
.
Author(s)
Juliane Sch\"afer and Korbinian Strimmer (https://strimmerlab.github.io).
References
Sch\"afer, J., and K. Strimmer. 2005. A shrinkage approach to large-scale covariance estimation and implications for functional genomics. Statist. Appl. Genet. Mol. Biol. 4:32. <DOI:10.2202/1544-6115.1175>
See Also
powcor.shrink
, cov.shrink
, pcor.shrink
, cor2pcor
Examples
# load corpcor library
library("corpcor")
# generate data matrix
p = 500
n = 10
X = matrix(rnorm(n*p), nrow = n, ncol = p)
lambda = 0.23 # some arbitrary lambda
# slow
system.time(
(W1 = solve(cov.shrink(X, lambda)))
)
# very fast
system.time(
(W2 = invcov.shrink(X, lambda))
)
# no difference
sum((W1-W2)^2)