new.arm.copula.sim {copulaSim} | R Documentation |
Simulating new multivariate datasets with shifted mean vector from existing empirical data
Description
Simulating new multivariate datasets with shifted mean vector from existing empirical data
Usage
new.arm.copula.sim(
data.input,
id.vec,
arm.vec,
shift.vec.list,
n.patient,
n.simulation,
seed = NULL,
validation.type = "none",
validation.sig.lvl = 0.05,
rmvnorm.matrix.decomp.method = "svd",
verbose = TRUE
)
Arguments
data.input , id.vec , arm.vec , n.patient , n.simulation , seed |
Please refer to the function copula.sim. |
shift.vec.list |
A list of numeric vectors to specify the mean-shifted values for new arms. |
validation.type , validation.sig.lvl , rmvnorm.matrix.decomp.method , verbose |
Please refer to the function copula.sim. |
Value
Please refer to the function copula.sim.
Author(s)
Pei-Shan Yen, Xuemin Gu, Jenny Jiao, Jane Zhang
Examples
library(copulaSim)
## Generate Empirical Data
# Assume that the single-arm, 3-dimensional empirical data follows multivariate normal data
library(mvtnorm)
arm1 <- rmvnorm(n = 80, mean = c(10,10.5,11), sigma = diag(3) + 0.5)
test_data <- as.data.frame(cbind(1:80, rep(1,80), arm1))
colnames(test_data) <- c("id", "arm", paste0("time_", 1:3))
## Generate 1 simulated datasets with one empirical arm and two new-arm.
## The mean difference between empirical arm and
# (i) the 1st new arm is assumed to be 2.5, 2.55, and 2.6 at each time point
# (ii) the 2nd new arm is assumed to be 4.5, 4.55, and 4.6 at each time point
new.arm.copula.sim(data.input = test_data[,-c(1,2)],
id.vec = test_data$id, arm.vec = test_data$arm,
n.patient = 100 , n.simulation = 1, seed = 2022,
shift.vec.list = list(c(2.5,2.55,2.6), c(4.5,4.55,4.6)))
[Package copulaSim version 0.0.1 Index]