varianceReduction {copula} | R Documentation |
Variance-Reduction Methods
Description
Computing antithetic variates or Latin hypercube samples.
Usage
rAntitheticVariates(u)
rLatinHypercube(u, ...)
Arguments
u |
a |
... |
additional arguments passed to the underlying |
Details
rAntitheticVariates()
takes any copula sample u
, builds
1-u
, and returns the two matrices in the form of an array; this
can be used for the variance-reduction method of (componentwise)
antithetic variates.
rLatinHypercube()
takes any copula sample,
shifts its marginal ranks minus 1 by standard uniforms and then
divides by the sample size in order to obtain a Latin hypercubed
sample.
Value
rAntitheticVariates()
array
of dimensionn\times d\times 2
, sayr
, wherer[,,1]
contains the original sampleu
andr[,,2]
contains the sample1-u
.rLatinHypercube()
matrix
of the same dimensions asu
.
References
Cambou, M., Hofert, M. and Lemieux, C. (2016). Quasi-random numbers for copula models. Statistics and Computing, 1–23.
Packham, N. and Schmidt, W. M. (2010). Latin hypercube sampling with dependence and applications in finance. Journal of Computational Finance 13(3), 81–111.
Examples
### 1 Basic plots ##############################################################
## Generate data from a Gumbel copula
cop <- gumbelCopula(iTau(gumbelCopula(), tau = 0.5))
n <- 1e4
set.seed(271)
U <- rCopula(n, copula = cop)
## Transform the sample to a Latin Hypercube sample
U.LH <- rLatinHypercube(U)
## Plot
## Note: The 'variance-reducing property' is barely visible, but that's okay
layout(rbind(1:2))
plot(U, xlab = quote(U[1]), ylab = quote(U[2]), pch = ".", main = "U")
plot(U.LH, xlab = quote(U[1]), ylab = quote(U[2]), pch = ".", main = "U.LH")
layout(1) # reset layout
## Transform the sample to an Antithetic variate sample
U.AV <- rAntitheticVariates(U)
stopifnot(identical(U.AV[,,1], U ),
identical(U.AV[,,2], 1-U))
## Plot original sample and its corresponding (componentwise) antithetic variates
layout(rbind(1:2))
plot(U.AV[,,1], xlab = quote(U[1]), ylab = quote(U[2]), pch=".", main= "U")
plot(U.AV[,,2], xlab = quote(U[1]), ylab = quote(U[2]), pch=".", main= "1 - U")
layout(1) # reset layout
### 2 Small variance-reduction study for exceedance probabilities ##############
## Auxiliary function for approximately computing P(U_1 > u_1,..., U_d > u_d)
## by Monte Carlo simulation based on pseudo-random numbers, Latin hypercube
## sampling and quasi-random numbers.
sProb <- function(n, copula, u)
{
d <- length(u)
stopifnot(n >= 1, inherits(copula, "Copula"), 0 < u, u < 1,
d == dim(copula))
umat <- rep(u, each = n)
## Pseudo-random numbers
U <- rCopula(n, copula = copula)
PRNG <- mean(rowSums(U > umat) == d)
## Latin hypercube sampling (based on the recycled 'U')
U. <- rLatinHypercube(U)
LHS <- mean(rowSums(U. > umat) == d)
## Quasi-random numbers
U.. <- cCopula(sobol(n, d = d, randomize = TRUE), copula = copula,
inverse = TRUE)
QRNG <- mean(rowSums(U.. > umat) == d)
## Return
c(PRNG = PRNG, LHS = LHS, QRNG = QRNG)
}
## Simulate the probabilities of falling in (u_1,1] x ... x (u_d,1]
library(qrng) # for quasi-random numbers
(Xtras <- copula:::doExtras()) # determine whether examples will be extra (long)
B <- if(Xtras) 500 else 100 # number of replications
n <- if(Xtras) 1000 else 200 # sample size
d <- 2 # dimension; note: for d > 2, the true value depends on the seed
nu <- 3 # degrees of freedom
th <- iTau(tCopula(df = nu), tau = 0.5) # correlation parameter
cop <- tCopula(param = th, dim = d, df = nu) # t copula
u <- rep(0.99, d) # lower-left endpoint of the considered cube
set.seed(42) # for reproducibility
true <- prob(cop, l = u, u = rep(1, d)) # true exceedance probability
system.time(res <- replicate(B, sProb(n, copula = cop, u = u)))
## "abbreviations":
PRNG <- res["PRNG",]
LHS <- res["LHS" ,]
QRNG <- res["QRNG",]
## Compute the variance-reduction factors and % improvements
vrf <- var(PRNG) / var(LHS) # variance reduction factor w.r.t. LHS
vrf. <- var(PRNG) / var(QRNG) # variance reduction factor w.r.t. QRNG
pim <- (var(PRNG) - var(LHS)) / var(PRNG) *100 # improvement w.r.t. LHS
pim. <- (var(PRNG) - var(QRNG))/ var(PRNG) *100 # improvement w.r.t. QRNG
## Boxplot
boxplot(list(PRNG = PRNG, LHS = LHS, QRNG = QRNG), notch = TRUE,
main = substitute("Simulated exceedance probabilities" ~
P(bold(U) > bold(u))~~ "for a" ~ t[nu.]~"copula",
list(nu. = nu)),
sub = sprintf(
"Variance-reduction factors and %% improvements: %.1f (%.0f%%), %.1f (%.0f%%)",
vrf, pim, vrf., pim.))
abline(h = true, lty = 3) # true value
mtext(sprintf("B = %d replications with n = %d and d = %d", B, n, d), side = 3)