| rFFrankJoe {copula} | R Documentation | 
Sampling Distribution F for Frank and Joe
Description
Generate a vector of variates V \sim F from the distribution
function F with Laplace-Stieltjes transform
(1-(1-\exp(-t)(1-e^{-\theta_1}))^\alpha)/(1-e^{-\theta_0}),
  
for Frank, or
1-(1-\exp(-t))^\alpha,
 for Joe, respectively,
where \theta_0 and \theta_1 denote two parameters
of Frank (that is, \theta_0,\theta_1\in(0,\infty)) and Joe (that is, \theta_0,\theta_1\in[1,\infty)) satisfying
\theta_0\le\theta_1
and \alpha=\theta_0/\theta_1.
Usage
rFFrank(n, theta0, theta1, rej)
rFJoe(n, alpha)
Arguments
n | 
 number of variates from   | 
theta0 | 
 parameter   | 
theta1 | 
 parameter   | 
rej | 
 method switch for   | 
alpha | 
 parameter   | 
Details
rFFrank(n, theta0, theta1, rej) calls
rF01Frank(rep(1,n), theta0, theta1, rej, 1) and
rFJoe(n, alpha) calls rSibuya(n, alpha).
Value
numeric vector of random variates V of length n.
See Also
rF01Frank, rF01Joe, also for references.
rSibuya, and rnacopula.
Examples
## Simple definition of the functions:
rFFrank
rFJoe