rFFrankJoe {copula}R Documentation

Sampling Distribution F for Frank and Joe

Description

Generate a vector of variates VFV \sim F from the distribution function FF with Laplace-Stieltjes transform

(1(1exp(t)(1eθ1))α)/(1eθ0),(1-(1-\exp(-t)(1-e^{-\theta_1}))^\alpha)/(1-e^{-\theta_0}),

for Frank, or

1(1exp(t))α,1-(1-\exp(-t))^\alpha,

for Joe, respectively, where θ0\theta_0 and θ1\theta_1 denote two parameters of Frank (that is, θ0,θ1(0,)\theta_0,\theta_1\in(0,\infty)) and Joe (that is, θ0,θ1[1,)\theta_0,\theta_1\in[1,\infty)) satisfying θ0θ1\theta_0\le\theta_1 and α=θ0/θ1\alpha=\theta_0/\theta_1.

Usage

rFFrank(n, theta0, theta1, rej)
rFJoe(n, alpha)

Arguments

n

number of variates from FF.

theta0

parameter θ0\theta_0.

theta1

parameter θ1\theta_1.

rej

method switch for rFFrank: if theta0 > rej a rejection from Joe's family (Sibuya distribution) is applied (otherwise, a logarithmic envelope is used).

alpha

parameter α=θ0/θ1\alpha= \theta_0/\theta_1 in (0,1](0,1] for rFJoe.

Details

rFFrank(n, theta0, theta1, rej) calls rF01Frank(rep(1,n), theta0, theta1, rej, 1) and rFJoe(n, alpha) calls rSibuya(n, alpha).

Value

numeric vector of random variates VV of length n.

See Also

rF01Frank, rF01Joe, also for references. rSibuya, and rnacopula.

Examples

## Simple definition of the functions:
rFFrank
rFJoe

[Package copula version 1.1-3 Index]