| rF01FrankJoe {copula} | R Documentation |
Sample Univariate Distributions Involved in Nested Frank and Joe Copulas
Description
rF01Frank:
Generate a vector of random variates V_{01}\sim F_{01}
with Laplace-Stieltjes transform
\psi_{01}(t;V_0)=
\Bigl(\frac{1-(1-\exp(-t)(1-e^{-\theta_1}))^{\theta_0/\theta_1}}{%
1-e^{-\theta_0}}\Bigr)^{V_0}.
for the given realizations V_0 of Frank's F_0 and the
parameters \theta_0,\theta_1\in(0,\infty)
such that \theta_0\le\theta_1. This distribution
appears on sampling nested Frank copulas. The parameter rej is used
to determine the cut-off point of two algorithms that are involved in
sampling F_{01}. If
\code{rej} < V_0\theta_0(1-e^{-\theta_0})^{V_0-1}
a rejection from F_{01} of Joe is applied (see
rF01Joe; the meaning of the parameter approx is
explained below), otherwise a sum is sampled with a logarithmic
envelope for each summand.
rF01Joe:
Generate a vector of random variates V_{01}\sim F_{01}
with Laplace-Stieltjes transform
\psi_{01}(t;V_0)=(1-(1-\exp(-t))^\alpha)^{V_0}.
for the given realizations V_0 of Joe's F_0 and
the parameter \alpha\in(0,1]. This distribution
appears on sampling nested Joe copulas. Here,
\alpha=\theta_0/\theta_1, where
\theta_0,\theta_1\in[1,\infty) such
that \theta_0\le\theta_1. The parameter
approx denotes the largest number of summands in the
sum-representation of V_{01} before the asymptotic
V_{01}=V_0^{1/\alpha}S(\alpha,1,\cos^{1/\alpha}(\alpha\pi/2),
\mathbf{1}_{\{\alpha=1\}};1)
is used to sample V_{01}.
Usage
rF01Frank(V0, theta0, theta1, rej, approx)
rF01Joe(V0, alpha, approx)
Arguments
V0 |
a vector of random variates from |
theta0, theta1, alpha |
parameters
|
rej |
parameter value as described above. |
approx |
parameter value as described above. |
Value
A vector of positive integers of length n
containing the generated random variates.
References
Hofert, M. (2011). Efficiently sampling nested Archimedean copulas. Computational Statistics & Data Analysis 55, 57–70.
See Also
rFFrank, rFJoe, rSibuya,
and rnacopula.
Examples
## Sample n random variates V0 ~ F0 for Frank and Joe with parameter
## chosen such that Kendall's tau equals 0.2 and plot histogram
n <- 1000
theta0.F <- copFrank@iTau(0.2)
V0.F <- copFrank@V0(n,theta0.F)
hist(log(V0.F), prob=TRUE); lines(density(log(V0.F)), col=2, lwd=2)
theta0.J <- copJoe@iTau(0.2)
V0.J <- copJoe@V0(n,theta0.J)
hist(log(V0.J), prob=TRUE); lines(density(log(V0.J)), col=2, lwd=2)
## Sample corresponding V01 ~ F01 for Frank and Joe and plot histogram
## copFrank@V01 calls rF01Frank(V0, theta0, theta1, rej=1, approx=10000)
## copJoe@V01 calls rF01Joe(V0, alpha, approx=10000)
theta1.F <- copFrank@iTau(0.5)
V01.F <- copFrank@V01(V0.F,theta0.F,theta1.F)
hist(log(V01.F), prob=TRUE); lines(density(log(V01.F)), col=2, lwd=2)
theta1.J <- copJoe@iTau(0.5)
V01.J <- copJoe@V01(V0.J,theta0.J,theta1.J)
hist(log(V01.J), prob=TRUE); lines(density(log(V01.J)), col=2, lwd=2)