tailconCOP {copBasic} | R Documentation |
The Tail Concentration Function of a Copula
Description
Compute the tail concentration function (q_\mathbf{C}
) of a copula \mathbf{C}(u,v)
(COP
) or diagnonal (diagCOP
) of a copula \delta_\mathbf{C}(t) = \mathbf{C}(t,t)
according to Durante and Semp (2015, p. 74):
q_\mathbf{C}(t) = \frac{\mathbf{C}(t,t)}{t} \cdot \mathbf{1}_{[0,0.5)} + \frac{1 - 2t + \mathbf{C}(t,t)}{1-t} \cdot \mathbf{1}_{[0.5, 1]}\mbox{\quad or}
q_\mathbf{C}(t) = \frac{\delta_\mathbf{C}(t)}{t} \cdot \mathbf{1}_{[0,0.5)} + \frac{1 - 2t + \delta_\mathbf{C}(t)}{1-t} \cdot \mathbf{1}_{[0.5, 1]}\mbox{,}
where t
is a nonexceedance probability on the margins and \mathbf{1}(.)
is an indicator function scoring 1 if condition is true otherwise zero on what interval t
resides: t \in [0,0.5)
or t \in [0.5,1]
. The q_\mathbf{C}(t; \mathbf{M}) = 1
for all t
for the M
copula and q_\mathbf{C}(t; \mathbf{W}) = 0
for all t
for the W
copula. Lastly, the function is related to the Blomqvist Beta (\beta_\mathbf{C}
; blomCOP
) by
q_\mathbf{C}(0.5) = (1 + \beta_\mathbf{C})/2\mbox{,}
where \beta_\mathbf{C} = 4\mathbf{C}(0.5, 0.5) - 1
. Lastly, the q_\mathbf{C}(t)
for 0,1 = t
is NaN
and no provision for alternative return is made. Readers are asked to note some of the mathematical similarity in this function to Blomqvist Betas in blomCOPss
in regards to tail dependency.
Usage
tailconCOP(t, cop=NULL, para=NULL, ...)
Arguments
t |
Nonexceedance probabilities |
cop |
A copula function; |
para |
Vector of parameters or other data structure, if needed, to pass to the copula; and |
... |
Additional arguments to pass to the copula function. |
Value
Value(s) for q_\mathbf{C}
are returned.
Author(s)
W.H. Asquith
References
Durante, F., and Sempi, C., 2015, Principles of copula theory: Boca Raton, CRC Press, 315 p.
See Also
Examples
tailconCOP(0.5, cop=PSP) == (1 + blomCOP(cop=PSP)) / 2 # TRUE