kfuncCOPlmoms {copBasic} | R Documentation |
The L-moments of the Kendall Function of a Copula
Description
Compute the L-moments of the Kendall Function (F_K(z; \mathbf{C})
) of a copula \mathbf{C}(u,v)
where the z
is the joint probability of the \mathbf{C}(u,v)
. The Kendall Function (or Kendall Distribution Function) is the cumulative distribution function (CDF) of the joint probability Z
of the coupla. The expected value of the z(F_K)
(mean, first L-moment \lambda_1
), because Z
has nonzero probability for 0 \le Z \le \infty
, is
\mathrm{E}[Z] = \lambda_1 = \int_0^\infty \bigl[1 - F_K(t)\bigr]\,\mathrm{d}t = \int_0^1 \bigl[1 - F_K(t)\bigr] \,\mathrm{d}t\mbox{,}
where for circumstances here 0 \le Z \le 1
. The \infty
is mentioned only because expectations of such CDFs are usually shown using (0,\infty)
limits, whereas integration of quantile functions (CDF inverses) use limits (0, 1)
. Because the support of Z
is (0, 1)
, like the probability F_K
, showing just it (\infty
) as the upper limit could be confusing—statements such as “probabilities of probabilities” are rhetorically complex. So, pursuit of word precision is made herein.
An expression for \lambda_r
for r \ge 2
in terms of the F_K(z)
is
\lambda_r = \frac{1}{r}\sum_{j=0}^{r-2} (-1)^j {r-2 \choose j}{r \choose j+1} \int_{0}^{1} \! \bigl[F_K(t)\bigr]^{r-j-1}\times \bigl[1 - F_K(t)\bigr]^{j+1}\, \mathrm{d}t\mbox{,}
where because of these circumstances the limits of integration are (0, 1)
and not (-\infty, \infty)
as in the usual definition of L-moments in terms of a distribution's CDF. (Note, such expressions did not make it into Asquith (2011), which needs rectification if that monograph ever makes it to a 2nd edition.)
The mean, L-scale, coefficient of L-variation (\tau_2
, LCV, L-scale/mean), L-skew (\tau_3
, TAU3), L-kurtosis (\tau_4
, TAU4), and \tau_5
(TAU5) are computed. In usual nomenclature, the L-moments are
\lambda_1 = \mbox{mean,}
\lambda_2 = \mbox{L-scale,}
\lambda_3 = \mbox{third L-moment,}
\lambda_4 = \mbox{fourth L-moment, and}
\lambda_5 = \mbox{fifth L-moment,}
whereas the L-moment ratios are
\tau_2 = \lambda_2/\lambda_1 = \mbox{coefficient of L-variation, }
\tau_3 = \lambda_3/\lambda_2 = \mbox{L-skew, }
\tau_4 = \lambda_4/\lambda_2 = \mbox{L-kurtosis, and}
\tau_5 = \lambda_5/\lambda_2 = \mbox{not named.}
It is common amongst practitioners to lump the L-moment ratios into the general term “L-moments” and remain inclusive of the L-moment ratios. For example, L-skew then is referred to as the 3rd L-moment when it technically is the 3rd L-moment ratio. There is no first L-moment ratio (meaningless); so, results from kfuncCOPlmoms
function will canoncially show a NA
in that slot. The coefficient of L-variation is \tau_2
(subscript 2) and not Kendall Tau (\tau
). Sample L-moments are readily computed by several packages in R (e.g. lmomco, lmom, Lmoments, POT).
Usage
kfuncCOPlmom(r, cop=NULL, para=NULL, ...)
kfuncCOPlmoms(cop=NULL, para=NULL, nmom=5, begin.mom=1, ...)
Arguments
r |
The |
cop |
A copula function; |
para |
Vector of parameters or other data structure, if needed, to pass to the copula; |
nmom |
The number of L-moments to compute; |
begin.mom |
The |
... |
Additional arguments to pass. |
Value
An R list
is returned by kfuncCOPlmoms
and only the scalar value of \lambda_r
by kfuncCOPlmom
.
lambdas |
Vector of the L-moments. First element is |
ratios |
Vector of the L-moment ratios. Second element is |
source |
An attribute identifying the computational source of the L-moments: “kfuncCOPlmoms”. |
Note
The L-moments of Kendall Functions appear to be not yet fully researched. An interesting research direction would be the trajectories of the L-moments or L-moment ratio diagrams for the Kendall Function and the degree to which distinction between copulas becomes evident—such diagrams are in wide-spread use for distinquishing between univariate distributions. It is noted, however, that Kendall Function L-moment ratio diagrams might be of less utility that in the univariate world—recalling that a univariate distribution is unique characteristized by its L-moments—because different copulas can have the same F_K(z)
, such as all bivariate extreme value copulas (see also Examples).
Rhos <- c(0.001, 0.01, seq(0.05, 0.95, by=0.05), 0.99, 0.999) L1 <- T2 <- T3 <- T4 <- Thetas <- vector(mode="numeric", length(Rhos)) for(i in 1:length(Thetas)) { Thetas[i] <- uniroot(function(p) Rhos[i] - rhoCOP(cop=PARETOcop, para=p), c(0,200))$root message("Rho = ", Rhos[i], " and Pareto theta = ", round(Thetas[i], digits=4)) lmr <- kfuncCOPlmoms(cop=PARETOcop, para=Thetas[i], nmom=4) L1[i] <- lmr$lambdas[1]; T2[i] <- lmr$ratios[2] T3[i] <- lmr$ratios[3]; T4[i] <- lmr$ratios[4] } LMR <- data.frame(Rho=Rhos, Theta=Thetas, L1=L1, T2=T2, T3=T3, T4=T4) plot(LMR$Rho, LMR$T2, ylim=c(-0.04, 0.5), xlim=c(0, 1), xlab="Spearman Rho or coefficient of L-variation", ylab="L-moment ratio", type="l", col="black") lines(LMR$Rho, LMR$T3, lty=1, col="red" ) lines(LMR$Rho, LMR$T4, lty=1, col="green" ) lines(LMR$T2, LMR$T3, lty=2, col="blue" ) lines(LMR$T2, LMR$T4, lty=2, col="deepskyblue2") lines(LMR$T3, LMR$T4, lty=2, col="purple" )
Author(s)
W.H. Asquith
References
Asquith, W.H., 2011, Distributional analysis with L-moment statistics using the R environment for statistical computing: Createspace Independent Publishing Platform, ISBN 978–146350841–8.
See Also
Examples
## Not run:
kfuncCOPlmom(1, cop=P) # 0.5 * 0.5 = 0.25 is expected joint prob. of independence
#[1] 0.2499999 (in agreement with theory)
ThetaGH <- 4.21
Rho <- rhoCOP(cop=GHcop, para=ThetaGH)
ThetaHR <- uniroot(function(p) Rho - rhoCOP(cop=HRcop, para=p), c(0, 100))$root
ThetaHR <- uniroot(function(p) Rho - rhoCOP(cop=HRcop, para=p), c(0, 100))$root
ThetaGL <- uniroot(function(p) Rho - rhoCOP(cop=GLcop, para=p), c(0, 100))$root
ls.str(kfuncCOPlmoms(cop=GHcop, para=ThetaGH)) # Gumbel-Hougaard copula
# lambdas : num [1:5] 0.440617 0.169085 0.011228 -0.000797 0.000249
# ratios : num [1:5] NA 0.383750 0.066400 -0.004720 0.001470
# L-skew = 0.066400
ls.str(kfuncCOPlmoms(cop=HRcop, para=ThetaHR)) # Husler-Reiss copula
# lambdas : num [1:5] 0.439627 0.169052 0.011427 -0.000785 0.000249
# ratios : num [1:5] NA 0.384540 0.067590 -0.004640 0.001470
# L-skew = 0.067590
ls.str(kfuncCOPlmoms(cop=GLcop, para=ThetaGL)) # Galambos copula
# lambdas : num [1:5] 0.440415 0.169079 0.011268 -0.000795 0.000248
# ratios : num [1:5] NA 0.383910 0.066650 -0.004700 0.001470
# L-skew = 0.066650
# These L-moments are extremely similar and within the numerics used.
# Extreme value copula all have the same Kendall Distribution function.
## End(Not run)
## Not run:
UV <- simCOP(200, cop=PLcop, para=1/pi, graphics=FALSE)
theta <- PLpar(UV[,1], UV[,2])
zs <- c(0.001, seq(0.01, 0.99, by=0.01), 0.999) # for later
# Take the sample estimated parameter and convert to joint probabilities Z
# Convert the Z to the Kendall Function estimates again with the sample parameter
Z <- PLcop(UV[,1], UV[,2], para=theta); KF <- kfuncCOP(Z, cop=PLcop, para=theta)
# Compute L-moments of the "Kendall function" and the sample versions
# and again see that the L-moment are for the distribution of the Z!
KNFlmr <- kfuncCOPlmoms(cop=PLcop, para=theta); SAMlmr <- lmomco::lmoms(Z)
knftxt <- paste0("Kendall L-moments: ",
paste(round(KNFlmr$lambdas, digits=4), collapse=", "))
samtxt <- paste0("Sample L-moments: " ,
paste(round(SAMlmr$lambdas, digits=4), collapse=", "))
plot(Z, KF, xlim=c(0,1), ylim=c(0,1), col="black",
xlab="COPULA(u,v) VALUE [JOINT PROBABILITY]",
ylab="KENDALL DISTRIBUTION FUNCTION (KDF), AS NONEXCEEDANCE PROBABILITY")
rug(Z, side=1, col="red", lwd=0.5); rug(KF, side=2, col="red", lwd=0.5) # rug plots
lines(zs, kfuncCOP(zs, cop=PLcop, para=1/pi), col="darkgreen")
knf_meanZ <- KNFlmr$lambdas[1]; sam_meanZ <- SAMlmr$lambdas[1]
knf_mean <- kfuncCOP(knf_meanZ, cop=PLcop, para=theta) # theo. Kendall function
sam_mean <- kfuncCOP(sam_meanZ, cop=PLcop, para=theta) # sam. est. of Kendall func
points(knf_meanZ, knf_mean, pch=16, col="blue", cex=3)
points(sam_meanZ, sam_mean, pch=16, col="cyan", cex=2)
lines(zs, zs-zs*log(zs), lty=2, lwd=0.8) # dash ref line for independence
text(0.2, 0.30, knftxt, pos=4, cex=1); text(0.2, 0.25, samtxt, pos=4, cex=1)
text(0.2, 0.18, paste0("Notice uniform distribution of vertical axis rug.\n",
"A Critical remark with respect to to KDFs."), cex=1, pos=4)
legend("bottomright", c("Independence copula", "KDF of Plackett copula",
"Theoretical mean", "Sample mean"), bty="n", y.intersp=1.5,
lwd=c(1, 1, NA, NA), lty=c(2, 1, NA, NA), pch=c(NA, NA, 16, 16),
col=c("black", "darkgreen", "blue", "cyan"), pt.cex=c(NA, NA, 3, 2)) #
## End(Not run)