kfuncCOPinv {copBasic} | R Documentation |
The Inverse Kendall Function of a Copula
Description
Compute the (numerical) inverse F^{(-1)}_K(z) \equiv z(F_K)
of the Kendall Function F_K(z; \mathbf{C})
(kfuncCOP
) of a copula \mathbf{C}(u,v)
given nonexceedance probability F_K
. The z
is the joint probability of the random variables U
and V
coupled to each other through the copula \mathbf{C}(u,v)
and the nonexceedance probability of the probability z
is F_K
—statements such as “probabilities of probabilities” are rhetorically complex so pursuit of word precision is made herein.
Usage
kfuncCOPinv(f, cop=NULL, para=NULL, subdivisions=100L,
rel.tol=.Machine$double.eps^0.25, abs.tol=rel.tol, ...)
Arguments
f |
Nonexceedance probability |
cop |
A copula function; |
para |
Vector of parameters or other data structure, if needed, to pass to the copula; |
subdivisions |
Argument of same name passed to |
rel.tol |
Argument of same name passed to |
abs.tol |
Argument of same name passed to |
... |
Additional arguments to pass. |
Value
The value(s) for z(F_K)
are returned.
Note
The L-moments of Kendall Functions appear to be unresearched. Therefore, the kfuncCOPlmom
and kfuncCOPlmoms
functions were written. These compute L-moments on the CDF F_K(z)
and not the quantile function z(F_K)
and thus are much faster than trying to use kfuncCOPinv
in the more common definitions of L-moments. A demonstration of the mean (first L-moment) of the Kendall Function numerical computation follows:
# First approach "afunc" <- function(f) kfuncCOPinv(f, cop=GHcop, para=pi) integrate(afunc, 0, 1) # 0.4204238 with absolute error < 2.5e-05 # Second approach kfuncCOPlmom(1, cop=GHcop, para=pi) # 0.4204222
where the first approach uses z(F_K)
, whereas the second method uses integration for the mean on F_K(z)
.
Author(s)
W.H. Asquith
References
Asquith, W.H., 2011, Distributional analysis with L-moment statistics using the R environment for statistical computing: Createspace Independent Publishing Platform, ISBN 978–146350841–8.
Joe, H., 2014, Dependence modeling with copulas: Boca Raton, CRC Press, 462 p.
See Also
Examples
## Not run:
Z <- c(0,0.25,0.50,0.75,1) # Joint probabilities of a N4212cop
kfuncCOPinv(kfuncCOP(Z, cop=N4212cop, para=4.3), cop=N4212cop, para=4.3)
# [1] 0.0000000 0.2499984 0.5000224 0.7500112 1.0000000
## End(Not run)