kfuncCOPinv {copBasic} | R Documentation |
The Inverse Kendall Function of a Copula
Description
Compute the (numerical) inverse of the Kendall Function
(
kfuncCOP
) of a copula given nonexceedance probability
. The
is the joint probability of the random variables
and
coupled to each other through the copula
and the nonexceedance probability of the probability
is
—statements such as “probabilities of probabilities” are rhetorically complex so pursuit of word precision is made herein.
Usage
kfuncCOPinv(f, cop=NULL, para=NULL, subdivisions=100L,
rel.tol=.Machine$double.eps^0.25, abs.tol=rel.tol, ...)
Arguments
f |
Nonexceedance probability |
cop |
A copula function; |
para |
Vector of parameters or other data structure, if needed, to pass to the copula; |
subdivisions |
Argument of same name passed to |
rel.tol |
Argument of same name passed to |
abs.tol |
Argument of same name passed to |
... |
Additional arguments to pass. |
Value
The value(s) for are returned.
Note
The L-moments of Kendall Functions appear to be unresearched. Therefore, the kfuncCOPlmom
and kfuncCOPlmoms
functions were written. These compute L-moments on the CDF and not the quantile function
and thus are much faster than trying to use
kfuncCOPinv
in the more common definitions of L-moments. A demonstration of the mean (first L-moment) of the Kendall Function numerical computation follows:
# First approach "afunc" <- function(f) kfuncCOPinv(f, cop=GHcop, para=pi) integrate(afunc, 0, 1) # 0.4204238 with absolute error < 2.5e-05 # Second approach kfuncCOPlmom(1, cop=GHcop, para=pi) # 0.4204222
where the first approach uses , whereas the second method uses integration for the mean on
.
Author(s)
W.H. Asquith
References
Asquith, W.H., 2011, Distributional analysis with L-moment statistics using the R environment for statistical computing: Createspace Independent Publishing Platform, ISBN 978–146350841–8.
Joe, H., 2014, Dependence modeling with copulas: Boca Raton, CRC Press, 462 p.
See Also
Examples
## Not run:
Z <- c(0,0.25,0.50,0.75,1) # Joint probabilities of a N4212cop
kfuncCOPinv(kfuncCOP(Z, cop=N4212cop, para=4.3), cop=N4212cop, para=4.3)
# [1] 0.0000000 0.2499984 0.5000224 0.7500112 1.0000000
## End(Not run)