footCOP {copBasic}R Documentation

The Spearman Footrule of a Copula

Description

Compute the measure of association known as the Spearman Footrule ψC\psi_\mathbf{C} (Nelsen et al., 2001, p. 281), which is defined as

ψC=32Q(C,M)12\mbox,\psi_\mathbf{C} = \frac{3}{2}\mathcal{Q}(\mathbf{C},\mathbf{M}) - \frac{1}{2}\mbox{,}

where C(u,v)\mathbf{C}(u,v) is the copula, M(u,v)\mathbf{M}(u,v) is the Fréchet–Hoeffding upper bound (M), and Q(a,b)\mathcal{Q}(a,b) is a concordance function (concordCOP) (Nelsen, 2006, p. 158). The ψC\psi_\mathbf{C} in terms of a single integration pass on the copula is

ψC=601C(u,u)du2\mbox.\psi_\mathbf{C} = 6 \int_0^1 \mathbf{C}(u,u)\,\mathrm{d}u - 2\mbox{.}

Note, Nelsen et al. (2001) use ϕC\phi_\mathbf{C} but that symbol is taken in copBasic for the Hoeffding Phi (hoefCOP), and Spearman Footrule does not seem to appear in Nelsen (2006).

Usage

footCOP(cop=NULL, para=NULL, by.concordance=FALSE, as.sample=FALSE, ...)

Arguments

cop

A copula function;

para

Vector of parameters or other data structure, if needed, to pass to the copula;

by.concordance

Instead of using the single integral to compute ψC\psi_\mathbf{C}, use the concordance function method implemented through concordCOP; and

as.sample

A logical controlling whether an optional R data.frame in para is used to compute the ψ^\hat\psi (see Note); and

...

Additional arguments to pass, which are dispatched to the copula function cop and possibly concordCOP, such as brute or delta used by that function.

Value

The value for ψC\psi_\mathbf{C} is returned.

Note

Conceptually, the sample Spearman Footrule is a standardized sum of the absolute difference in the ranks (Genest et al., 2010). The sample ψ^\hat\psi is

ψ^=1i=1nRiSin21\mbox,\hat\psi = 1 - \frac{\sum_{i=1}^n |R_i - S_i|}{n^2 - 1}\mbox{,}

where RiR_i and SiS_i are the respective ranks of XX and YY and nn is sample size. The sampling variance of ψ^\hat\psi under assumption of independence between XX and YY is

var(ψ^)=2n2+75(n+1)(n1)2\mbox.\mathrm{var}(\hat\psi) = \frac{2n^2 + 7}{5(n+1)(n-1)^2}\mbox{.}

Genest et al. (2010) present additional equations for estimation of the distribution ψ^\hat\psi variance for conditions of dependence based on copulas.

Author(s)

W.H. Asquith

References

Genest, C., Nešlehová, J., and Ghorbal, N.B., 2010, Spearman's footrule and Gini's gamma—A review with complements: Journal of Nonparametric Statistics, v. 22, no. 8, pp. 937–954.

Nelsen, R.B., 2006, An introduction to copulas: New York, Springer, 269 p.

Nelsen, R.B., Quesada-Molina, J.J., Rodríguez-Lallena, J.A., Úbeda-Flores, M., 2001, Distribution functions of copulas—A class of bivariate probability integral transforms: Statistics and Probability Letters, v. 54, no. 3, pp. 277–282.

See Also

blomCOP, giniCOP, hoefCOP, rhoCOP, tauCOP, wolfCOP

Examples

  footCOP(cop=PSP)                      # 0.3177662
# footCOP(cop=PSP, by.concordance=TRUE) # 0.3178025

## Not run: 
n <- 2000; UV <- simCOP(n=n, cop=GHcop, para=2.3, graphics=FALSE)
footCOP(para=UV, as.sample=TRUE)                  # 0.5594364 (sample version)
footCOP(cop=GHcop, para=2.3)                      # 0.5513380 (copula integration)
footCOP(cop=GHcop, para=2.3, by.concordance=TRUE) # 0.5513562 (concordance function)
# where the later issued warnings on the integration
## End(Not run)

[Package copBasic version 2.2.4 Index]