W_N5p12a {copBasic} | R Documentation |
Ordinal Sums of Lower-Bound Copula, Example 5.12a of Nelsen's Book
Description
Compute shuffles of Fréchet–Hoeffding lower-bound copula (Nelsen, 2006, p. 173), which is defined by partitioning \mathbf{W}
within \mathcal{I}^2
into n
subintervals:
\mathbf{W}_n(u,v) = \mathrm{max}\biggl(\frac{k-1}{n}, u+v-\frac{k}{n} \biggr)
for points within the partitions
(u,v) \in \biggl[\frac{k-1}{n}, \frac{k}{n}\biggr]\times \biggl[ \frac{k-1}{n}, \frac{k}{n}\biggr]\mbox{,\ }k = 1,2,\cdots,n
and for points otherwise out side the partitions
\mathbf{W}_n(u,v) = \mathrm{min}(u,v)\mbox{.}
The support of \mathbf{W}_n
consists of n
line segments connecting coordinate pairs \{(k-1)/n,\, k/n\}
and \{k/n,\, (k-1)/n\}
as stated by Nelsen (2006). The Spearman Rho (rhoCOP
) is defined by \rho_\mathbf{C} = 1 - (2/n^2)
, and the Kendall Tau (tauCOP
) by \tau_\mathbf{C} = 1 - (2/n)
.
Usage
W_N5p12a(u, v, para=1, ...)
Arguments
u |
Nonexceedance probability |
v |
Nonexceedance probability |
para |
A positive integer |
... |
Additional arguments to pass. |
Value
Value(s) for the copula are returned.
Author(s)
W.H. Asquith
References
Nelsen, R.B., 2006, An introduction to copulas: New York, Springer, 269 p.
See Also
W
, ORDSUMcop
, ORDSUWcop
, M_N5p12b
Examples
W_N5p12a(0.4, 0.6, para=5)
## Not run:
# Nelsen (2006, exer. 5.12a, p. 172, fig. 5.3a)
UV <- simCOP(1000, cop=W_N5p12a, para=4) # which is the same as
para <- list(cop=c(W, W, W, W), para=NULL, part=c(0,0.25,0.50,0.75,1))
UV <- simCOP(1000, cop=ORDSUMcop, para=para)
## End(Not run)