M_N5p12b {copBasic}R Documentation

Shuffles of Upper-Bound Copula, Example 5.12b of Nelsen's Book

Description

Compute shuffles of Fréchet–Hoeffding upper-bound copula (Nelsen, 2006, p. 173), which is defined by partitioning M\mathbf{M} within I2\mathcal{I}^2 into nn subintervals:

Mn(u,v)=min(uk1n,vnkn)\mathbf{M}_n(u,v) = \mathrm{min}\biggl(u-\frac{k-1}{n}, v-\frac{n-k}{n} \biggr)

for points within the partitions

(u,v)[k1n,kn]×[nkn,nk+1n]\mbox, k=1,2,,n(u,v) \in \biggl[\frac{k-1}{n}, \frac{k}{n}\biggr]\times \biggl[ \frac{n-k}{n}, \frac{n-k+1}{n}\biggr]\mbox{,\ }k = 1,2,\cdots,n

and for points otherwise out side the partitions

Mn(u,v)=max(u+v1,0)\mbox.\mathbf{M}_n(u,v) = \mathrm{max}(u+v-1,0)\mbox{.}

The support of Mn\mathbf{M}_n consists of nn line segments connecting coordinate pairs {(k1)/n,(nk)/n}\{(k-1)/n,\, (n-k)/n\} and {k/n,(nk+1)/n}\{k/n,\, (n-k+1)/n\} as stated by Nelsen (2006). It is useful that Nelsen stated such as this helps to identify that Nelsen's typesetting of the terms in the second square brackets—the VV direction—is reversed from that shown in this documentation. The Spearman Rho (rhoCOP) is defined by ρC=(2/n2)1\rho_\mathbf{C} = (2/n^2) - 1, and the Kendall Tau (tauCOP) by τC=(2/n)1\tau_\mathbf{C} = (2/n) - 1.

Usage

M_N5p12b(u, v, para=1, ...)

Arguments

u

Nonexceedance probability uu in the XX direction;

v

Nonexceedance probability vv in the YY direction;

para

A positive integer n1,2,n \in 1, 2, \cdots; and

...

Additional arguments to pass.

Value

Value(s) for the copula are returned.

Author(s)

W.H. Asquith

References

Nelsen, R.B., 2006, An introduction to copulas: New York, Springer, 269 p.

See Also

M, ORDSUMcop, W_N5p12a

Examples

M_N5p12b(0.4, 0.6, para=3)

## Not run: 
  # Nelsen (2006, exer. 5.12b, p. 173, fig. 5.3b)
  UV <- simCOP(1000, cop=M_N5p12b, para=4) #
## End(Not run)

[Package copBasic version 2.2.4 Index]