CLcop {copBasic} | R Documentation |
The Clayton Copula
Description
The Clayton copula (Joe, 2014, p. 168) is
\mathbf{C}_{\Theta}(u,v) = \mathbf{CL}(u,v) = \mathrm{max}\bigl[(u^{-\Theta}+v^{-\Theta}-1; 0)\bigr]^{-1/\Theta}\mbox{,}
where \Theta \in [-1,\infty), \Theta \ne 0
. The copula, as \Theta \rightarrow -1^{+}
limits, to the countermonotonicity coupla (\mathbf{W}(u,v)
; W
), as \Theta \rightarrow 0
limits to the independence copula (\mathbf{\Pi}(u,v)
; P
), and as \Theta \rightarrow \infty
, limits to the comonotonicity copula (\mathbf{M}(u,v)
; M
). The parameter \Theta
is readily computed from a Kendall Tau (tauCOP
) by \tau_\mathbf{C} = \Theta/(\Theta+2)
.
Usage
CLcop(u, v, para=NULL, tau=NULL, ...)
Arguments
u |
Nonexceedance probability |
v |
Nonexceedance probability |
para |
A vector (single element) of parameters—the |
tau |
Optional Kendall Tau; and |
... |
Additional arguments to pass. |
Value
Value(s) for the copula are returned. Otherwise if tau
is given, then the \Theta
is computed and a list
having
para |
The parameter |
tau |
Kendall Tau. |
and if para=NULL
and tau=NULL
, then the values within u
and v
are used to compute Kendall Tau and then compute the parameter, and these are returned in the aforementioned list.
Author(s)
W.H. Asquith
References
Joe, H., 2014, Dependence modeling with copulas: Boca Raton, CRC Press, 462 p.
See Also
Examples
# Lower tail dependency of Theta = pi --> 2^(-1/pi) = 0.8020089 (Joe, 2014, p. 168)
taildepCOP(cop=CLcop, para=pi)$lambdaL # 0.80201