svyrich {convey} | R Documentation |
Richness measures
Description
Estimate Peichl, Schaefer and Scheicher (2010) richness measures.
Usage
svyrich(formula, design, ...)
## S3 method for class 'survey.design'
svyrich(
formula,
design,
type_measure,
g,
type_thresh = "abs",
abs_thresh = NULL,
percent = 1.5,
quantiles = 0.5,
thresh = FALSE,
na.rm = FALSE,
deff = FALSE,
linearized = FALSE,
...
)
## S3 method for class 'svyrep.design'
svyrich(
formula,
design,
type_measure,
g,
type_thresh = "abs",
abs_thresh = NULL,
percent = 1.5,
quantiles = 0.5,
thresh = FALSE,
na.rm = FALSE,
deff = FALSE,
linearized = FALSE,
return.replicates = FALSE,
...
)
## S3 method for class 'DBIsvydesign'
svyrich(formula, design, ...)
Arguments
formula |
a formula specifying the income variable |
design |
a design object of class |
... |
passed to |
type_measure |
A string "Cha", "FGTT1" or "FGTT2" defining the richness measure. |
g |
Richness preference parameter. |
type_thresh |
type of richness threshold. If "abs" the threshold is fixed and given the value of abs_thresh; if "relq" it is given by |
abs_thresh |
richness threshold value if type_thresh is "abs" |
percent |
the multiple of the quantile or mean used in the richness threshold definition. Defaults to |
quantiles |
the quantile used used in the richness threshold definition. Defaults to |
thresh |
return the richness threshold value |
na.rm |
Should cases with missing values be dropped? |
deff |
Return the design effect (see |
linearized |
Should a matrix of linearized variables be returned |
return.replicates |
Return the replicate estimates? |
Details
you must run the convey_prep
function on your survey design object immediately after creating it with the svydesign
or svrepdesign
function.
Value
Object of class "cvystat
", which are vectors with a "var
" attribute giving the variance and a "statistic
" attribute giving the name of the statistic.
Author(s)
Guilherme Jacob, Djalma Pessoa and Anthony Damico
References
Michal Brzezinski (2014). Statistical Inference for Richness Measures. Applied Economics, Vol. 46, No. 14, pp. 1599-1608, DOI doi:10.1080/00036846.2014.880106.
Andreas Peichl, Thilo Schaefer, and Christoph Scheicher (2010). Measuring richness and poverty: A micro data application to Europe and Germany. Review of Income and Wealth, Vol. 56, No.3, pp. 597-619.
Guillaume Osier (2009). Variance estimation for complex indicators of poverty and inequality. Journal of the European Survey Research Association, Vol.3, No.3, pp. 167-195, ISSN 1864-3361, URL https://ojs.ub.uni-konstanz.de/srm/article/view/369.
See Also
Examples
library(survey)
library(laeken)
data(eusilc) ; names( eusilc ) <- tolower( names( eusilc ) )
# linearized design
des_eusilc <- svydesign( ids = ~rb030 , strata = ~db040 , weights = ~rb050 , data = eusilc )
des_eusilc <- convey_prep( des_eusilc )
# replicate-weighted design
des_eusilc_rep <- as.svrepdesign( des_eusilc , type = "bootstrap" )
des_eusilc_rep <- convey_prep( des_eusilc_rep )
# concave Chakravarty richness measure
# higher g= parameters tend toward headcount ratio, richness threshold fixed
svyrich(~eqincome, des_eusilc, type_measure = "Cha" , g=3, abs_thresh=30000)
# g=1 parameter computes the richness gap index, richness threshold fixed
svyrich(~eqincome, des_eusilc, type_measure = "Cha" , g=1, abs_thresh=30000)
# higher g= parameters tend toward headcount ratio, richness threshold equal to the median
svyrich(~eqincome, des_eusilc, type_measure = "Cha" , g=3, type_thresh= "relq" )
# g=1 parameter computes the richness gap index, richness threshold equal to the median
svyrich(~eqincome, des_eusilc, type_measure = "Cha" , g=1, type_thresh= "relq" )
# higher g= parameters tend toward headcount ratio, richness threshold equal to the mean
svyrich(~eqincome, des_eusilc, type_measure = "Cha" , g=3, type_thresh= "relm" )
# g=1 parameter computes the richness gap index, richness threshold equal to the mean
svyrich(~eqincome, des_eusilc, type_measure = "Cha" , g=1, type_thresh= "relm" )
# using svrep.design:
# higher g= parameters tend toward headcount ratio, richness threshold fixed
svyrich(~eqincome, des_eusilc_rep, type_measure = "Cha" , g=3, abs_thresh=30000 )
# g=1 parameter computes the richness gap index, richness threshold fixed
svyrich(~eqincome, des_eusilc_rep, type_measure = "Cha" , g=1, abs_thresh=30000 )
# higher g= parameters tend toward headcount ratio, richness threshold equal to the median
svyrich(~eqincome, des_eusilc_rep, type_measure = "Cha" , g=3, type_thresh= "relq" )
# g=1 parameter computes the richness gap index, richness threshold equal to the median
svyrich(~eqincome, des_eusilc_rep, type_measure = "Cha" , g=1, type_thresh= "relq" )
# higher g= parameters tend toward headcount ratio, richness threshold equal to the mean
svyrich(~eqincome, des_eusilc_rep, type_measure = "Cha" , g=3, type_thresh= "relm" )
# g=1 parameter computes the richness gap index, richness threshold equal to the mean
svyrich(~eqincome, des_eusilc_rep, type_measure = "Cha" , g=1, type_thresh= "relm" )
## Not run:
# database-backed design
library(RSQLite)
library(DBI)
dbfile <- tempfile()
conn <- dbConnect( RSQLite::SQLite() , dbfile )
dbWriteTable( conn , 'eusilc' , eusilc )
dbd_eusilc <-
svydesign(
ids = ~rb030 ,
strata = ~db040 ,
weights = ~rb050 ,
data="eusilc",
dbname=dbfile,
dbtype="SQLite"
)
dbd_eusilc <- convey_prep( dbd_eusilc )
# higher g= parameters tend toward headcount ratio, richness threshold fixed
svyrich(~eqincome, dbd_eusilc, type_measure = "Cha" , g=3, abs_thresh=30000 )
# g=1 parameter computes the richness gap index, richness threshold fixed
svyrich(~eqincome, dbd_eusilc, type_measure = "Cha" , g=1, abs_thresh=30000 )
# higher g= parameters tend toward headcount ratio, richness threshold equal to the median
svyrich(~eqincome, dbd_eusilc, type_measure = "Cha" , g=3, type_thresh= "relq" )
# g=1 parameter computes the richness gap index, richness threshold equal to the median
svyrich(~eqincome, dbd_eusilc, type_measure = "Cha" , g=1, type_thresh= "relq" )
# higher g= parameters tend toward headcount ratio, richness threshold equal to the mean
svyrich(~eqincome, dbd_eusilc, type_measure = "Cha" , g=3, type_thresh= "relm" )
# g=1 parameter computes the richness gap index, richness threshold equal to the mean
svyrich(~eqincome, dbd_eusilc, type_measure = "Cha" , g=1, type_thresh= "relm" )
dbRemoveTable( conn , 'eusilc' )
dbDisconnect( conn , shutdown = TRUE )
## End(Not run)