svyqsr {convey} | R Documentation |
Quintile Share Ratio
Description
Estimate ratio of the total income received by the highest earners to the total income received by lowest earners, defaulting to 20
Usage
svyqsr(formula, design, ...)
## S3 method for class 'survey.design'
svyqsr(
formula,
design,
alpha1 = 0.2,
alpha2 = (1 - alpha1),
na.rm = FALSE,
upper_quant = FALSE,
lower_quant = FALSE,
upper_tot = FALSE,
lower_tot = FALSE,
deff = FALSE,
linearized = FALSE,
influence = FALSE,
...
)
## S3 method for class 'svyrep.design'
svyqsr(
formula,
design,
alpha1 = 0.2,
alpha2 = (1 - alpha1),
na.rm = FALSE,
upper_quant = FALSE,
lower_quant = FALSE,
upper_tot = FALSE,
lower_tot = FALSE,
deff = FALSE,
linearized = FALSE,
return.replicates = FALSE,
...
)
## S3 method for class 'DBIsvydesign'
svyqsr(formula, design, ...)
Arguments
formula |
a formula specifying the income variable |
design |
a design object of class |
... |
future expansion |
alpha1 |
order of the lower quintile |
alpha2 |
order of the upper quintile |
na.rm |
Should cases with missing values be dropped? |
upper_quant |
return the lower bound of highest earners |
lower_quant |
return the upper bound of lowest earners |
upper_tot |
return the highest earners total |
lower_tot |
return the lowest earners total |
deff |
Return the design effect (see |
linearized |
Should a matrix of linearized variables be returned |
influence |
Should a matrix of (weighted) influence functions be returned? (for compatibility with |
return.replicates |
Return the replicate estimates? |
Details
you must run the convey_prep
function on your survey design object immediately after creating it with the svydesign
or svrepdesign
function.
Value
Object of class "cvystat
", which are vectors with a "var
" attribute giving the variance and a "statistic
" attribute giving the name of the statistic.
Author(s)
Djalma Pessoa and Anthony Damico
References
Guillaume Osier (2009). Variance estimation for complex indicators of poverty and inequality. Journal of the European Survey Research Association, Vol.3, No.3, pp. 167-195, ISSN 1864-3361, URL https://ojs.ub.uni-konstanz.de/srm/article/view/369.
Jean-Claude Deville (1999). Variance estimation for complex statistics and estimators: linearization and residual techniques. Survey Methodology, 25, 193-203, URL https://www150.statcan.gc.ca/n1/en/catalogue/12-001-X19990024882.
See Also
Examples
library(survey)
library(laeken)
data(eusilc) ; names( eusilc ) <- tolower( names( eusilc ) )
# linearized design
des_eusilc <- svydesign( ids = ~rb030 , strata = ~db040 , weights = ~rb050 , data = eusilc )
des_eusilc <- convey_prep( des_eusilc )
svyqsr( ~eqincome , design = des_eusilc, upper_tot = TRUE, lower_tot = TRUE )
# replicate-weighted design
des_eusilc_rep <- as.svrepdesign( des_eusilc , type = "bootstrap" )
des_eusilc_rep <- convey_prep( des_eusilc_rep )
svyqsr( ~eqincome , design = des_eusilc_rep, upper_tot = TRUE, lower_tot = TRUE )
## Not run:
# linearized design using a variable with missings
svyqsr( ~ db090 , design = des_eusilc )
svyqsr( ~ db090 , design = des_eusilc , na.rm = TRUE )
# replicate-weighted design using a variable with missings
svyqsr( ~ db090 , design = des_eusilc_rep )
svyqsr( ~ db090 , design = des_eusilc_rep , na.rm = TRUE )
# database-backed design
library(RSQLite)
library(DBI)
dbfile <- tempfile()
conn <- dbConnect( RSQLite::SQLite() , dbfile )
dbWriteTable( conn , 'eusilc' , eusilc )
dbd_eusilc <-
svydesign(
ids = ~rb030 ,
strata = ~db040 ,
weights = ~rb050 ,
data="eusilc",
dbname=dbfile,
dbtype="SQLite"
)
dbd_eusilc <- convey_prep( dbd_eusilc )
svyqsr( ~ eqincome , design = dbd_eusilc )
dbRemoveTable( conn , 'eusilc' )
dbDisconnect( conn , shutdown = TRUE )
## End(Not run)