svypoormed {convey} | R Documentation |
Relative median poverty gap
Description
Estimate the median of incomes less than the at-risk-of-poverty threshold (arpt
).
Usage
svypoormed(formula, design, ...)
## S3 method for class 'survey.design'
svypoormed(formula, design, quantiles = 0.5, percent = 0.6, na.rm = FALSE, ...)
## S3 method for class 'svyrep.design'
svypoormed(formula, design, quantiles = 0.5, percent = 0.6, na.rm = FALSE, ...)
## S3 method for class 'DBIsvydesign'
svypoormed(formula, design, ...)
Arguments
formula |
a formula specifying the income variable |
design |
a design object of class |
... |
arguments passed on to 'survey::oldsvyquantile' |
quantiles |
income quantile, usually .5 (median) |
percent |
fraction of the quantile, usually .60 |
na.rm |
Should cases with missing values be dropped? |
Details
you must run the convey_prep
function on your survey design object immediately after creating it with the svydesign
or svrepdesign
function.
Value
Object of class "cvystat
", which are vectors with a "var
" attribute giving the variance and a "statistic
" attribute giving the name of the statistic.
Author(s)
Djalma Pessoa and Anthony Damico
References
Guillaume Osier (2009). Variance estimation for complex indicators of poverty and inequality. Journal of the European Survey Research Association, Vol.3, No.3, pp. 167-195, ISSN 1864-3361, URL https://ojs.ub.uni-konstanz.de/srm/article/view/369.
Jean-Claude Deville (1999). Variance estimation for complex statistics and estimators: linearization and residual techniques. Survey Methodology, 25, 193-203, URL https://www150.statcan.gc.ca/n1/en/catalogue/12-001-X19990024882.
See Also
Examples
library(survey)
library(laeken)
data(eusilc) ; names( eusilc ) <- tolower( names( eusilc ) )
# linearized design
des_eusilc <- svydesign( ids = ~rb030 , strata = ~db040 , weights = ~rb050 , data = eusilc )
des_eusilc <- convey_prep( des_eusilc )
svypoormed( ~eqincome , design = des_eusilc )
# replicate-weighted design
des_eusilc_rep <- as.svrepdesign( des_eusilc , type = "bootstrap" )
des_eusilc_rep <- convey_prep( des_eusilc_rep )
svypoormed( ~eqincome , design = des_eusilc_rep )
## Not run:
# linearized design using a variable with missings
svypoormed( ~ py010n , design = des_eusilc )
svypoormed( ~ py010n , design = des_eusilc , na.rm = TRUE )
# replicate-weighted design using a variable with missings
svypoormed( ~ py010n , design = des_eusilc_rep )
svypoormed( ~ py010n , design = des_eusilc_rep , na.rm = TRUE )
# database-backed design
library(RSQLite)
library(DBI)
dbfile <- tempfile()
conn <- dbConnect( RSQLite::SQLite() , dbfile )
dbWriteTable( conn , 'eusilc' , eusilc )
dbd_eusilc <-
svydesign(
ids = ~rb030 ,
strata = ~db040 ,
weights = ~rb050 ,
data="eusilc",
dbname=dbfile,
dbtype="SQLite"
)
dbd_eusilc <- convey_prep( dbd_eusilc )
svypoormed( ~ eqincome , design = dbd_eusilc )
dbRemoveTable( conn , 'eusilc' )
dbDisconnect( conn , shutdown = TRUE )
## End(Not run)