SpotIV {controlfunctionIV} | R Documentation |
SpotIV method for causal inference in semi-parametric outcome model
Description
Perform causal inference in the semi-parametric outcome model with possibly invalid IVs.
Usage
SpotIV(
Y,
D,
Z,
X = NULL,
intercept = TRUE,
invalid = TRUE,
d1,
d2,
w0,
M.est = TRUE,
M = 2,
bs.Niter = 40,
bw = NULL
)
Arguments
Y |
The outcome observation, a vector of length |
D |
The treatment observation, a vector of length |
Z |
The instrument observation of dimension |
X |
The covariates observation of dimension |
intercept |
Whether the intercept is included. (default = |
invalid |
If TRUE, the method is robust to the presence of possibly invalid IVs; If FALSE, the method assumes all IVs to be valid. (default = |
d1 |
A treatment value for computing CATE(d1,d2|w0). |
d2 |
A treatment value for computing CATE(d1,d2|w0). |
w0 |
A vector of the instruments and baseline covariates for computing CATE(d1,d2|w0). |
M.est |
If |
M |
The dimension of indices in the outcome model, from 1 to 3. (default = |
bs.Niter |
The bootstrap resampling size for constructing the confidence interval. |
bw |
A (M+1) by 1 vector bandwidth specification. (default = |
Value
SpotIV
returns an object of class "SpotIV", which "SpotIV" is a list containing the following components:
betaHat |
The estimate of the model parameter in front of the treatment. |
cateHat |
The estimate of CATE(d1,d2|w0). |
cate.sdHat |
The estimated standard error of cateHat. |
SHat |
The set of relevant IVs. |
VHat |
The set of relevant and valid IVs. |
Maj.pass |
The indicator that the majority rule is satisfied. |
References
Li, S., Guo, Z. (2020), Causal Inference for Nonlinear Outcome Models with Possibly Invalid Instrumental Variables, Preprint arXiv:2010.09922.
Examples
data("nonlineardata")
Y <- nonlineardata[,"CVD"]
D <- nonlineardata[,"bmi"]
Z <- as.matrix(nonlineardata[,c("Z.1","Z.2","Z.3","Z.4")])
X <- as.matrix(nonlineardata[,c("age","sex")])
d1 <- median(D)+1
d2 <- median(D)
w0 <- c(rep(0,4), 30, 1)
SpotIV.model <- SpotIV(Y,D,Z,X,invalid = TRUE,d1 =d1, d2 = d2,w0 = w0)
summary(SpotIV.model)