Probit.cf {controlfunctionIV} | R Documentation |
Causal inference in probit outcome models with possibly invalid IVs
Description
Perform causal inference in the probit outcome model with possibly invalid IVs.
Usage
Probit.cf(
Y,
D,
Z,
X = NULL,
intercept = TRUE,
invalid = TRUE,
d1 = NULL,
d2 = NULL,
w0 = NULL,
bs.Niter = 40
)
Arguments
Y |
The outcome observation, a vector of length |
D |
The treatment observation, a vector of length |
Z |
The instrument observation of dimension |
X |
The covariates observation of dimension |
intercept |
Whether the intercept is included. (default = |
invalid |
If |
d1 |
A treatment value for computing CATE(d1,d2|w0). |
d2 |
A treatment value for computing CATE(d1,d2|w0). |
w0 |
A vector of the instruments and baseline covariates for computing CATE(d1,d2|w0). |
bs.Niter |
The bootstrap resampling size for constructing the confidence interval. |
Value
Probit.cf
returns an object of class "SpotIV", which is a list containing the following components:
betaHat |
The estimate of the model parameter in front of the treatment. |
beta.sdHat |
The estimated standard error of betaHat. |
cateHat |
The estimate of CATE(d1,d2|w0). |
cate.sdHat |
The estimated standard deviation of |
SHat |
The estimated set of relevant IVs. |
VHat |
The estimated set of relevant and valid IVs. |
Maj.pass |
The indicator that the majority rule is satisfied. |
References
Li, S., Guo, Z. (2020), Causal Inference for Nonlinear Outcome Models with Possibly Invalid Instrumental Variables, Preprint arXiv:2010.09922.
Examples
data("nonlineardata")
Y <- nonlineardata[,"CVD"]
D <- nonlineardata[,"bmi"]
Z <- as.matrix(nonlineardata[,c("Z.1","Z.2","Z.3","Z.4")])
X <- as.matrix(nonlineardata[,c("age","sex")])
d1 <- median(D)+1
d2 <- median(D)
w0 <- c(rep(0,4), 30, 1)
Probit.model <- Probit.cf(Y,D,Z,X,invalid = TRUE,d1 =d1, d2 = d2,w0 = w0)
summary(Probit.model)