| convergents {contfrac} | R Documentation |
Partial convergents of continued fractions
Description
Partial convergents of continued fractions or generalized continued fractions
Usage
convergents(a)
gconvergents(a,b, b0 = 0)
Arguments
a, b |
In function |
b0 |
The floor of the fraction |
Details
Function convergents() returns partial convergents of the continued fraction
a_0+
\frac{1}{a_1+
\frac{1}{a_2+
\frac{1}{a_3+
\frac{1}{a_4+
\frac{1}{a_5+\ddots
}}}}}
where a = a_0,a_1,a_2,\ldots (note the
off-by-one issue).
Function gconvergents() returns partial convergents of the continued fraction
b_0+
\frac{a_1}{b_1+
\frac{a_2}{b_2+
\frac{a_3}{b_3+
\frac{a_4}{b_4+
\frac{a_5}{b_5+\ddots
}}}}}
where a = a_1,a_2,\ldots
Value
Returns a list of two elements, A for the numerators and
B for the denominators
Note
This classical algorithm generates very large partial numerators and denominators.
To evaluate limits, use functions CF() or GCF().
Author(s)
Robin K. S. Hankin
References
W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling 1992. Numerical recipes 3rd edition: the art of scientific computing. Cambridge University Press; section 5.2 “Evaluation of continued fractions”
See Also
Examples
# Successive approximations to pi:
jj <- convergents(c(3,7,15,1,292))
jj$A/jj$B - pi # should get smaller
convergents(rep(1,10))