LifPolicy {contextual}R Documentation

Policy: Continuum Bandit Policy with Lock-in Feedback


The continuum type Lock-in Feedback (LiF) policy is based on an approach used in physics and engineering, where, if a physical variable y depends on the value of a well controllable physical variable x, the search for argmax x f(x) can be solved via what is nowadays considered as standard electronics. This approach relies on the possibility of making the variable x oscillate at a fixed frequency and to look at the response of the dependent variable y at the very same frequency by means of a lock-in amplifier. The method is particularly suitable when y is immersed in a high noise level, where other more direct methods would fail. Furthermore, should the entire curve shift (or, in other words, if argmax x f(x) changes in time, also known as concept drift), the circuit will automatically adjust to the new situation and quickly reveal the new maximum position. This approach is widely used in a very large number of applications, both in industry and research, and is the basis for the Lock-in Feedback (LiF) method.


In this, Lock in feedback goes through the following steps, again and again:

Now move to step 1 and repeat..


b <- LifPolicy$new(inttime,amplitude,learnrate,omega,x0_start)


Kaptein, M. C., Van Emden, R., & Iannuzzi, D. (2016). Tracking the decoy: maximizing the decoy effect through sequential experimentation. Palgrave Communications, 2, 16082.

See Also

Core contextual classes: Bandit, Policy, Simulator, Agent, History, Plot

Bandit subclass examples: BasicBernoulliBandit, ContextualLogitBandit, OfflineReplayEvaluatorBandit

Policy subclass examples: EpsilonGreedyPolicy, ContextualLinTSPolicy

[Package contextual version Index]