| covmodel {constrainedKriging} | R Documentation |
Create isotropic covariance model
Description
Function to generate isotropic covariance models, or add an isotropic covariance model to an existing isotropic model.
Usage
covmodel(modelname, mev, nugget,variance, scale, parameter, add.covmodel)
## S3 method for class 'covmodel'
print(x, ...)
Arguments
modelname |
a character scalar with the name of an isotropic
covariance model, see Details for a list of implemented models. A
call of |
mev |
a numeric scalar, variance of the measurement error. |
nugget |
a numeric scalar, variance of microstructure white noise process with range smaller than the minimal distance between any pair of support data. |
variance |
a numeric scalar, partial sill of the covariance model. |
scale |
a numeric scalar, scale ("range") parameter of the covariance model. |
parameter |
a numeric vector of further covariance parameters, missing
for some model like |
add.covmodel |
an object of the class |
x |
a covariance model generated by |
... |
further printing arguments |
Details
The name and parametrisation of the covariance models originate from the
function CovarianceFct of the archived package RandomFields,
version 2.0.71.
The following isotropic covariance functions are implemented (equations
taken from help page of function CovarianceFct of archived package
RandomFields, version 2.0.71, note that the variance and range
parameters are equal to 1 in the following formulae and h is the
lag distance.):
-
besselC(h)=2^a \Gamma(a+1)h^{-a} J_a(h)For a 2-dimensional region, the parameter
amust be greater than or equal to 0. -
cauchyC(h)=\left(1+h^2\right)^{-a}The parameter
amust be positive. -
cauchytbmC(h)= (1+(1-b/3)h^a)(1+h^a)^{(-b/a-1)}The parameter
amust be in (0,2] andbpositive. The model is valid for 3 dimensions. It allows for simulating random fields where fractal dimension and Hurst coefficient can be chosen independently. -
circularC(h)= \left(1-\frac 2\pi \left(h \sqrt{1-h^2} + \arcsin(h)\right)\right) 1_{[0,1]}(h)This isotropic covariance function is valid only for dimensions less than or equal to 2.
-
constantC(h)=1 -
cubicC(h)=(1- 7h^2+8.75h^3-3.5h^5+0.75 h^7)1_{[0,1]}(h)This model is valid only for dimensions less than or equal to 3. It is a 2 times differentiable covariance functions with compact support.
-
dampedcosine(hole effect model)C(h)= e^{-a h} \cos(h)This model is valid for 2 dimensions iff
a \ge 1. -
exponentialC(h)=e^{-h}This model is a special case of the
whittlemodel (fora=0.5) and thestablemodel (fora = 1). -
gaussC(h)=e^{-h^2}This model is a special case of the
stablemodel (fora=2). Seegneitingfor an alternative model that does not have the disadvantages of the Gaussian model. -
gencauchy(generalisedcauchy)C(h)= \left(1+h^a\right)^{(-b/a)}The parameter
amust be in (0,2] andbpositive. This model allows for random fields where fractal dimension and Hurst coefficient can be chosen independently. -
gengneiting(generalisedgneiting) Ifa=1and let\beta = b+1thenC(h)=\left(1+\beta h\right) (1-h)^{\beta} 1_{[0,1]}(h)If
a=2and let\beta = b+2thenC(h)=\left(1+\beta h+\left(\beta ^2-1\right)h^2/3\right) (1-h)^{\beta} 1_{[0,1]}(h)If
a=3and let\beta = b+3thenC(h)=\left(1+\beta h+\left(2\beta ^2-3\right)\frac{h^2}{5} +\left(\beta ^2-4\right)\beta \frac{h^3}{15}\right)(1-h)^{\beta} 1_{[0,1]}(h)The parameter
ais a positive integer; here only the casesa=1, 2, 3are implemented. For two dimensional regions the parameterbmust greater than or equal to(2 + 2a +1)/2. -
gneitingC(h)=\left(1 + 8 sh + 25 (sh)^2 + 32 (sh)^3\right)(1-sh)^8 1_{[0,1]}(sh)where
s=0.301187465825. This covariance function is valid only for dimensions less than or equal to 3. It is a 6 times differentiable covariance functions with compact support. It is an alternative to thegaussianmodel since its graph is visually hardly distinguishable from the graph of the Gaussian model, but possesses neither the mathematical and nor the numerical disadvantages of the Gaussian model. -
hyperbolicC(h)= c^{-b}(K_{b}(a c))^{-1} ( c^2 + h^2 )^{b/2} K_{b}( a [ c^2 + h^2 ]^{1/2} )The parameters are such that
c\ge0,a>0andb>0,\quador
c>0,a>0andb=0,\quador
c>0,a\ge0, andb<0.
Note that this class is over-parametrised; always one of the three parametersa,c, and scale can be eliminated in the formula. -
lgd1(local-global distinguisher)C(h)= 1-\frac{\beta}{a+b}|h|^{a}, |h|\le 1 \qquad \hbox{and} \qquad \frac{a}{a+b}|h|^{-b}, |h|> 1Here
b>0andamsut be in(0,0.5]. The random field has for 2-dimensional regions fractal dimension3 - a/2and Hurst coefficient1 -b/2forb \in (0,1] -
maternC(h)= 2^{1-a} \Gamma(a)^{-1} (\sqrt{2 a} h)^a K_a(\sqrt{2 a}h)The parameter
amust be positive. This is the model of choice if the smoothness of a random field is to be parametrised: ifa > mthen the graph ismtimes differentiable. -
nuggetC(h)=1_{[0]}(h) -
pentaC(h)= \left(1 - \frac{22}3 h^2 +33 h^4 - \frac{77}2 h^5 + \frac{33}2 h^7 -\frac{11}2 h^9 + \frac 56 h^{11} \right)1_{[0,1]}(h)valid only for dimensions less than or equal to 3. This is a 4 times differentiable covariance functions with compact support.
-
powerC(h)= (1-h)^a 1_{[0,1]}(h)This covariance function is valid for 2 dimensions iff
a \ge 1.5. Fora=1we get the well-known triangle (or tent) model, which is valid on the real line, only. -
qexponentialC(h)= ( 2 e^{-h} - a e^{-2x} ) / ( 2 - a )The parameter
amust be in[0,1]. -
sphericalC(h)=\left(1- 1.5 h+0.5 h^3\right) 1_{[0,1]}(h)This covariance function is valid only for dimensions less than or equal to 3.
-
stableC(h)=\exp\left(-h^a\right)The parameter
amust be in(0,2]. Seeexponentialandgaussianfor special cases. -
waveC(h)=\frac{\sin h}{h}, \quad h>0 \qquad \hbox{and } \qquad C(0)=1This isotropic covariance function is valid only for dimensions less than or equal to 3. It is a special case of the
besselmodel (fora=0.5). -
whittleC(h) = 2^{1-a} \Gamma(a)^{-1} h^a K_a(h)The parameter
amust be positive. This is the model of choice if the smoothness of a random field is to be parametrised: ifa > mthen the graph ismtimes differentiable.
The default values of the arguments
mev,
nugget,
variance and scale are eq 0.
Value
an object of the class covmodel that defines a covariance model.
Author(s)
Christoph Hofer, christoph.hofer@alumni.ethz.ch
Examples
# table with all available covariance models and their
# parameters
covmodel()
# exponential model without a measurement error and without a nugget,
# partial sill = 10, scale parameter = 15
covmodel(modelname = "exponential", variance = 10, scale = 15)
# exponential model with a measurement error ( mev = 0.5) and a
# nugget (nugget = 2.1), exponential partial sill (variance = 10)
# and scale parameter = 15
covmodel(modelname = "exponential", mev = 0.5, nugget = 2.1,
variance = 10, scale = 15)