caFactorialDesign {conjoint} | R Documentation |
Function caFactorialDesign creates full or fractional factorial design
Description
Function caFactorialDesign creates full or fractional factorial design. Function can return orthogonal factorial design.
Usage
caFactorialDesign(data, type="null", cards=NA, seed=123)
Arguments
data |
experiment whose design consists of two or more factors, each with with 2 or more discrete levels |
type |
type of factorial design (possible values: "full", "fractional", "ca", "aca", "orthogonal"; default value: type="null") |
cards |
number of experimental runs |
seed |
seed settings (default value: seed=123) |
Author(s)
Andrzej Bak andrzej.bak@ue.wroc.pl,
Tomasz Bartlomowicz tomasz.bartlomowicz@ue.wroc.pl
Department of Econometrics and Computer Science, Wroclaw University of Economics, Poland http://keii.ue.wroc.pl/conjoint
References
Bak A., Bartlomowicz T. (2012), Conjoint analysis method and its implementation in conjoint R package, [In:] Pociecha J., Decker R. (Eds.), Data analysis methods and its applications, C.H.Beck, Warszawa, p.239-248.
Bak A. (2009), Analiza Conjoint [Conjoint Analysis], [In:] Walesiak M., Gatnar E. (Eds.), Statystyczna analiza danych z wykorzystaniem programu R [Statistical Data Analysis using R], Wydawnictwo Naukowe PWN, Warszawa, p. 283-317.
Green P.E., Srinivasan V. (1978), Conjoint Analysis in Consumer Research: Issues and Outlook, "Journal of Consumer Research", September, 5, p. 103-123.
SPSS 6.1 Categories (1994), SPSS Inc., Chicago.
See Also
caEncodedDesign
and caRecreatedDesign
Examples
#Example 1
library(conjoint)
experiment<-expand.grid(
price=c("low","medium","high"),
variety=c("black","green","red"),
kind=c("bags","granulated","leafy"),
aroma=c("yes","no"))
design=caFactorialDesign(data=experiment,type="full")
print(design)
print(cor(caEncodedDesign(design)))
#Example 2
library(conjoint)
experiment<-expand.grid(
price=c("low","medium","high"),
variety=c("black","green","red"),
kind=c("bags","granulated","leafy"),
aroma=c("yes","no"))
design=caFactorialDesign(data=experiment)
print(design)
print(cor(caEncodedDesign(design)))
#Example 3
library(conjoint)
experiment<-expand.grid(
price=c("low","medium","high"),
variety=c("black","green","red"),
kind=c("bags","granulated","leafy"),
aroma=c("yes","no"))
design=caFactorialDesign(data=experiment,type="orthogonal")
print(design)
print(cor(caEncodedDesign(design)))
#Example 4
library(conjoint)
experiment<-expand.grid(
price=c("low","medium","high"),
variety=c("black","green","red"),
kind=c("bags","granulated","leafy"),
aroma=c("yes","no"))
design=caFactorialDesign(data=experiment,type="fractional",cards=16)
print(design)
print(cor(caEncodedDesign(design)))
#Example 5
library(conjoint)
experiment<-expand.grid(
price=c("low","medium","high"),
variety=c("black","green","red"),
kind=c("bags","granulated","leafy"),
aroma=c("yes","no"))
design=caFactorialDesign(data=experiment,type="fractional")
print(design)
print(cor(caEncodedDesign(design)))
#Example 6
library(conjoint)
experiment<-expand.grid(
price=c("low","medium","high"),
variety=c("black","green","red"),
kind=c("bags","granulated","leafy"),
aroma=c("yes","no"))
design=caFactorialDesign(data=experiment,type="ca")
print(design)
print(cor(caEncodedDesign(design)))
#Example 7
library(conjoint)
experiment<-expand.grid(
price=c("low","medium","high"),
variety=c("black","green","red"),
kind=c("bags","granulated","leafy"),
aroma=c("yes","no"))
design=caFactorialDesign(data=experiment,type="aca")
print(design)
print(cor(caEncodedDesign(design)))