plot_multidim {conformalInference.multi} | R Documentation |
Plot Confidence Regions obtained with Split Conformal
Description
Plot Confidence Regions obtained with Split Conformal
Usage
plot_multidim(out, same.scale = FALSE)
Arguments
out |
The output of a prediction function. |
same.scale |
Should I force the same scale for all the y-axis ? Default is FALSE. |
Details
It exploits the package ggplot2
, gridExtra
and hrbrthemes
to better visualize the results.
Value
g_list A list of ggplots (output[[i]] is the i-th observation confidence region).
Examples
n=50
p=4
q=2
mu=rep(0,p)
x = mvtnorm::rmvnorm(n, mu)
beta<-sapply(1:q, function(k) c(mvtnorm::rmvnorm(1,mu)))
y = x%*%beta + t(mvtnorm::rmvnorm(q,1:n))
x0=x[ceiling(0.9*n):n,]
y0=y[ceiling(0.9*n):n,]
n0<-nrow(y0)
q<-ncol(y)
fun=mean_multi()
final.point = conformal.multidim.split(x,y,x0, fun$train.fun, fun$predict.fun,
alpha=0.1,
split=NULL, seed=FALSE, randomized=FALSE,seed.rand=FALSE,
verbose=FALSE, rho=0.5,score ="l2",s.type="st-dev")
ppp2<-plot_multidim(final.point)
n=25
p=4
q=2
mu=rep(0,p)
x = mvtnorm::rmvnorm(n, mu)
beta<-sapply(1:q, function(k) c(mvtnorm::rmvnorm(1,mu)))
y = x%*%beta + t(mvtnorm::rmvnorm(q,1:n))
x0=x[ceiling(0.9*n):n,]
y0=y[ceiling(0.9*n):n,]
n0<-nrow(y0)
q<-ncol(y)
fun=mean_multi()
#################################### FULL CONFORMAL
final.full=conformal.multidim.full(x, y, x0, fun$train.fun,
fun$predict.fun, score="l2",
num.grid.pts.dim=5, grid.factor=1.25,
verbose=FALSE)
ppp<-plot_multidim(final.full)
[Package conformalInference.multi version 1.1.1 Index]