CPValidity {conformalClassification} | R Documentation |
Computes the deviation from exact validity as the Euclidean norm of the difference of the observed error and the expected error
Description
Computes the deviation from exact validity as the Euclidean norm of the difference of the observed error and the expected error
Usage
CPValidity(matPValues = NULL, testLabels = NULL)
Arguments
matPValues |
Matrix of p-values |
testLabels |
True labels for the test-set |
Value
The deviation from exact validity
See Also
CPCalibrationPlot
,
CPEfficiency
,
CPErrorRate
,
CPObsFuzziness
.
Examples
## load the library
library(mlbench)
#library(caret)
library(conformalClassification)
## load the DNA dataset
data(DNA)
originalData <- DNA
## make sure first column is always the label and class labels are always 1, 2, ...
nrAttr = ncol(originalData) #no of attributes
tempColumn = originalData[, 1]
originalData[, 1] = originalData[, nrAttr]
originalData[, nrAttr] = tempColumn
originalData[, 1] = as.factor(originalData[, 1])
originalData[, 1] = as.numeric(originalData[, 1])
## partition the data into training and test set
#result = createDataPartition(originalData[, 1], p = 0.8, list = FALSE)
size = nrow(originalData)
result = sample(1:size, 0.8*size)
trainingSet = originalData[result, ]
testSet = originalData[-result, ]
##ICP classification
pValues = ICPClassification(trainingSet, testSet)
testLabels = testSet[,1]
CPValidity(pValues, testLabels)
[Package conformalClassification version 1.0.0 Index]