CPErrorRate {conformalClassification} | R Documentation |
Computes error rate of a conformal predictor, which is defined as the ratio of predictions with missing true class lables over the size of the testset
Description
Computes error rate of a conformal predictor, which is defined as the ratio of predictions with missing true class lables over the size of the testset
Usage
CPErrorRate(matPValues, testLabels, sigfLevel = 0.05)
Arguments
matPValues |
Matrix of p-values |
testLabels |
True labels for the test-set |
sigfLevel |
Significance level |
Value
The error rate
See Also
CPCalibrationPlot
,
CPEfficiency
,
CPValidity
,
CPObsFuzziness
.
Examples
## load the library
library(mlbench)
#library(caret)
library(conformalClassification)
## load the DNA dataset
data(DNA)
originalData <- DNA
## make sure first column is always the label and class labels are always 1, 2, ...
nrAttr = ncol(originalData) #no of attributes
tempColumn = originalData[, 1]
originalData[, 1] = originalData[, nrAttr]
originalData[, nrAttr] = tempColumn
originalData[, 1] = as.factor(originalData[, 1])
originalData[, 1] = as.numeric(originalData[, 1])
## partition the data into training and test set
#result = createDataPartition(originalData[, 1], p = 0.8, list = FALSE)
size = nrow(originalData)
result = sample(1:size, 0.8*size)
trainingSet = originalData[result, ]
testSet = originalData[-result, ]
##ICP classification
pValues = ICPClassification(trainingSet, testSet)
testLabels = testSet[,1]
CPErrorRate(pValues, testLabels)
[Package conformalClassification version 1.0.0 Index]