confintROB {confintROB} | R Documentation |
Confidence Intervals for Robust and Classical Linear Mixed Model Estimators.
Description
Confidence Intervals (CIs) based on parametric and semi-parametric bootstrap (and Wald-type) for robust and classical Linear Mixed Models estimators.
Usage
confintROB(
object,
parm,
level = 0.95,
method = c("boot", "BCa", "Wald"),
nsim = 5000,
boot.type = c("wild", "parametric"),
clusterID,
verify.saved = NULL,
.export = NULL,
varComprob.data,
varComprob.random,
...
)
Arguments
object |
an object of class |
parm |
parameters for which intervals are sought. Specified by an integer vector of positions (see example) or a character vector of parameter names. Fixed effects parameters are ordered according their appearance in the formula. For the order of variance components, see argument |
level |
confidence level in ]0; 1[ |
method |
type of CIs: |
nsim |
number of bootstrap samples, positive integer |
boot.type |
type of bootstrap: |
clusterID |
text variable indicating the clustering variable. This is only required for method |
verify.saved |
check if an existing CI is already computed. Only for the vignette examples |
.export |
passed on to |
varComprob.data |
a data frame object used to fit the original model. This is only required for the |
varComprob.random |
text variable describing the random effect structure as it would be written with |
... |
additional arguments passed on to |
Details
Implements the classical Wald-type CI, the parametric and the wild bootstrap (Modugno & Giannerini, 2013) for linear mixed models estimated with the robust estimators in rlmer
(Koller, 2016; Koller & Stahel, 2022) and
varComprob
(Agostinelli & Yohai, 2016) and the classical estimators in lmer
(Bates et al., 2013). For bootstrap methods, percentile, Bias-Corrected, and accelerated (BCa) versions are available. All these versions are tested in Mason, Cantoni & Ghisletta (2021, 2024).
confintROB
computes 5 types of CIs based on arguments method
and boot.type
.
method
:
- "Wald"
: CIs computation is based on standard error estimates
- "boot"
: CIs are computed using the respective percentile of estimates obtained on bootstrap sample(s) based on the confidence level
- "BCa"
: based on the Jacknife method, the Bias-Corrected and accelerated parameters are computed on the original sample to correct estimates obtained from the bootstrap sample(s)
boot.type
(for method
s "boot"
and "BCa"
):
- "parametric"
: the classical parametric bootstrap scheme is used to create bootstrap sample(s)
- "wild"
: the semi-parametric bootstrap scheme is used to create bootstrap sample(s)
Value
a numeric table (matrix with column and row names) of CIs.
References
Agostinelli, C., & Yohai, V. J. (2016). Composite robust estimators for linear mixed models. Journal of the American Statistical Association, 111 (516), 1764-1774. doi:10.1080/01621459.2015.1115358
Bates, D., Machler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67 (1), 1-48. doi: 10.18637/jss.v067.i01
Koller, M. (2016). robustlmm: An R package for robust estimation of linear mixed-effects models. Journal of Statistical Software, 75 (6), 1-24. doi: 10.18637/jss.v075.i06
Koller, M., & Stahel, W. A. (2022). Robust estimation of general linear mixed effects models. In P. M. Yi & P. K. Nordhausen (Eds.), Robust and multivariate statistical methods. Springer Nature Switzerland AG.
Mason, F., Cantoni, E., & Ghisletta, P. (2021). Parametric and semi-parametric bootstrap-based confidence intervals for robust linear mixed models. Methodology, 17 (4), 271-295. doi: 10.5964/meth.6607
Mason, F., Cantoni, E., & Ghisletta, P. (2024). Linear mixed models and latent growth curve models for group comparison studies contaminated by outliers. Psychological methods. doi: 10.1037/met0000643
Modugno, L., & Giannerini, S. (2013). The wild bootstrap for multilevel models. Communications in Statistics - Theory and Methods, 44 (22), 4812-4825. doi: 10.1080/03610926.2013.80280
See Also
Examples
if (require(robustlmm)) {
model.RSE <- rlmer(Reaction ~ 1 + Days + (Days|Subject),
data = sleepstudy)
CI.RSE <- confintROB(model.RSE, level = .95, boot.type = "wild",
parm = c(1,2), # indicates that only CIs
# for the intercept and Days are asked.
nsim = 10) # small nsim for speed, in practice use, e.g., 5000
print(CI.RSE)
}