wt_cov {configural} | R Documentation |
Compute weighted covariances
Description
Compute the weighted covariance among variables in a matrix or between the variables in two separate matrices/vectors.
Usage
wt_cov(
x,
y = NULL,
wt = NULL,
as_cor = FALSE,
use = c("everything", "listwise", "pairwise"),
unbiased = TRUE,
df_type = c("count", "sum_wts")
)
wt_cor(x, y = NULL, wt = NULL, use = "everything")
Arguments
x |
Vector or matrix of x variables. |
y |
Vector or matrix of y variables |
wt |
Vector of weights |
as_cor |
Logical scalar that determines whether the covariances should be standardized (TRUE) or unstandardized (FALSE). |
use |
Method for handling missing values. "everything" uses all values and does not account for missingness, "listwise" uses only complete cases, and "pairwise" uses pairwise deletion. |
unbiased |
Logical scalar determining whether variance should be unbiased (TRUE) or maximum-likelihood (FALSE). |
df_type |
Character scalar determining whether the degrees of freedom for unbiased estimates should be based on numbers of cases (n - 1; "count"; default) or squared sums of weights (1 - sum(w^2); "sum_wts"). |
Value
Scalar, vector, or matrix of covariances.
Author(s)
Jeffrey A. Dahlke
Examples
wt_cov(x = c(1, 0, 2), y = c(1, 2, 3), wt = c(1, 2, 2), as_cor = FALSE, use = "everything")
wt_cov(x = c(1, 0, 2), y = c(1, 2, 3), wt = c(1, 2, 2), as_cor = TRUE, use = "everything")
wt_cov(x = cbind(c(1, 0, 2), c(1, 2, 3)), wt = c(1, 2, 2), as_cor = FALSE, use = "everything")
wt_cov(x = cbind(c(1, 0, 2), c(1, 2, 3)), wt = c(1, 2, 2), as_cor = TRUE, use = "everything")
wt_cov(x = cbind(c(1, 0, 2, NA), c(1, 2, 3, 3)),
wt = c(1, 2, 2, 1), as_cor = FALSE, use = "listwise")
wt_cov(x = cbind(c(1, 0, 2, NA), c(1, 2, 3, 3)),
wt = c(1, 2, 2, 1), as_cor = TRUE, use = "listwise")