cpa_mat {configural} | R Documentation |
Conduct criterion profile analysis using a correlation matrix
Description
Conduct criterion profile analysis using a correlation matrix
Usage
cpa_mat(
formula,
cov_mat,
n = NULL,
se_var_mat = NULL,
se_beta_method = c("normal", "lm"),
adjust = c("fisher", "pop", "cv"),
conf_level = 0.95,
...
)
Arguments
formula |
Regression formula with a single outcome variable on the left-hand side and one or more predictor variables on the right-hand side (e.g., Y ~ X1 + X2). |
cov_mat |
Correlation matrix containing the variables to be used in the regression. |
n |
Sample size. Used to compute adjusted R-squared and, if |
se_var_mat |
Optional. The sampling error covariance matrix among the unique elements of |
se_beta_method |
Method to use to estimate the standard errors of standardized regression (beta) coefficients. Current options include "normal" (use the Jones-Waller, 2015, normal-theory approach) and "lm" (estimate standard errors using conventional regression formulas). |
adjust |
Method to adjust R-squared for overfitting. See |
conf_level |
Confidence level to use for confidence intervals. |
... |
Additional arguments. |
Value
An object of class "cpa" containing the criterion pattern vector and CPA variance decomposition
References
Jones, J. A., & Waller, N. G. (2015). The normal-theory and asymptotic distribution-free (ADF) covariance matrix of standardized regression coefficients: Theoretical extensions and finite sample behavior. Psychometrika, 80(2), 365–378. doi:10.1007/s11336-013-9380-y
Revelle, W., Condon, D. M., Wilt, J., French, J. A., Brown, A., & Elleman, L. G. (2017). Web- and phone-based data collection using planned missing designs. In N. G. Fielding, R. M. Lee, & G. Blank, The SAGE Handbook of Online Research Methods (pp. 578–594). SAGE Publications. doi:10.4135/9781473957992.n33
Wiernik, B. M., Wilmot, M. P., Davison, M. L., & Ones, D. S. (2019). Meta-analytic criterion profile analysis. Psychological Methods doi:10.1037/met0000305
Examples
sevar <- cor_covariance_meta(mindfulness$r, mindfulness$n, mindfulness$sevar_r, mindfulness$source)
cpa_mat(mindfulness ~ ES + A + C + Ex + O,
cov_mat = mindfulness$r,
n = NULL,
se_var_mat = sevar,
adjust = "pop")