CVpredict {condvis2}R Documentation

A predict generic function for condvis

Description

A predict generic function for condvis

Usage

CVpredict(
  fit,
  newdata,
  ...,
  ptype = "pred",
  pthreshold = NULL,
  ylevels = NULL,
  ptrans = NULL,
  pinterval = NULL,
  pinterval_level = 0.95
)

## Default S3 method:
CVpredict(
  fit,
  newdata,
  ...,
  ptype = "pred",
  pthreshold = NULL,
  pinterval = NULL,
  pinterval_level = 0.95,
  ylevels = NULL,
  ptrans = NULL
)

## S3 method for class 'lm'
CVpredict(
  fit,
  newdata,
  ...,
  ptype = "pred",
  pthreshold = NULL,
  pinterval = NULL,
  pinterval_level = 0.95,
  ylevels = NULL,
  ptrans = NULL
)

## S3 method for class 'glm'
CVpredict(
  fit,
  ...,
  type = "response",
  ptype = "pred",
  pthreshold = NULL,
  pinterval = NULL,
  pinterval_level = 0.95,
  ylevels = NULL,
  ptrans = NULL
)

## S3 method for class 'lda'
CVpredict(
  fit,
  ...,
  ptype = "pred",
  pthreshold = NULL,
  ylevels = NULL,
  ptrans = NULL
)

## S3 method for class 'qda'
CVpredict(
  fit,
  ...,
  ptype = "pred",
  pthreshold = NULL,
  ylevels = NULL,
  ptrans = NULL
)

## S3 method for class 'nnet'
CVpredict(
  fit,
  ...,
  type = NULL,
  ptype = "pred",
  pthreshold = NULL,
  ylevels = NULL,
  ptrans = NULL
)

## S3 method for class 'randomForest'
CVpredict(
  fit,
  ...,
  type = NULL,
  ptype = "pred",
  pthreshold = NULL,
  ylevels = NULL,
  ptrans = NULL
)

## S3 method for class 'ranger'
CVpredict(
  fit,
  ...,
  type = NULL,
  ptype = "pred",
  pthreshold = NULL,
  ylevels = NULL,
  ptrans = NULL
)

## S3 method for class 'rpart'
CVpredict(
  fit,
  ...,
  type = NULL,
  ptype = "pred",
  pthreshold = NULL,
  ylevels = NULL,
  ptrans = NULL
)

## S3 method for class 'tree'
CVpredict(
  fit,
  ...,
  type = NULL,
  ptype = "pred",
  pthreshold = NULL,
  ylevels = NULL,
  ptrans = NULL
)

## S3 method for class 'C5.0'
CVpredict(
  fit,
  ...,
  type = NULL,
  ptype = "pred",
  pthreshold = NULL,
  ylevels = NULL,
  ptrans = NULL
)

## S3 method for class 'svm'
CVpredict(
  fit,
  ...,
  type = NULL,
  ptype = "pred",
  pthreshold = NULL,
  ylevels = NULL,
  ptrans = NULL
)

## S3 method for class 'gbm'
CVpredict(
  fit,
  ...,
  type = NULL,
  ptype = "pred",
  pthreshold = NULL,
  ylevels = NULL,
  n.trees = fit$n.trees,
  ptrans = NULL
)

## S3 method for class 'loess'
CVpredict(fit, newdata = NULL, ...)

## S3 method for class 'ksvm'
CVpredict(
  fit,
  newdata,
  ...,
  type = NULL,
  ptype = "pred",
  pthreshold = NULL,
  ylevels = NULL,
  ptrans = NULL
)

## S3 method for class 'glmnet'
CVpredict(
  fit,
  newdata,
  ...,
  type = "response",
  ptype = "pred",
  pthreshold = NULL,
  ylevels = NULL,
  ptrans = NULL,
  s = NULL,
  makex = NULL
)

## S3 method for class 'cv.glmnet'
CVpredict(
  fit,
  newdata,
  ...,
  type = "response",
  ptype = "pred",
  pthreshold = NULL,
  ylevels = NULL,
  ptrans = NULL,
  makex = NULL
)

## S3 method for class 'glmnet.formula'
CVpredict(
  fit,
  newdata,
  ...,
  type = "response",
  ptype = "pred",
  pthreshold = NULL,
  ylevels = NULL,
  ptrans = NULL,
  s = NULL
)

## S3 method for class 'cv.glmnet.formula'
CVpredict(
  fit,
  newdata,
  ...,
  type = "response",
  ptype = "pred",
  pthreshold = NULL,
  ylevels = NULL,
  ptrans = NULL
)

## S3 method for class 'keras.engine.training.Model'
CVpredict(
  fit,
  newdata,
  ...,
  ptype = "pred",
  pthreshold = NULL,
  ylevels = NULL,
  ptrans = NULL,
  batch_size = 32,
  response = NULL,
  predictors = NULL
)

## S3 method for class 'kde'
CVpredict(fit, newdata = fit$x, ..., scale = TRUE)

## S3 method for class 'densityMclust'
CVpredict(
  fit,
  newdata = NULL,
  ...,
  ptype = "pred",
  pthreshold = NULL,
  ylevels = NULL,
  ptrans = NULL,
  scale = TRUE
)

## S3 method for class 'MclustDA'
CVpredict(
  fit,
  newdata,
  ...,
  ptype = "pred",
  pthreshold = NULL,
  ylevels = NULL,
  ptrans = NULL
)

## S3 method for class 'MclustDR'
CVpredict(
  fit,
  newdata,
  ...,
  ptype = "pred",
  pthreshold = NULL,
  ylevels = NULL,
  ptrans = NULL
)

## S3 method for class 'Mclust'
CVpredict(
  fit,
  newdata,
  ...,
  ptype = "pred",
  pthreshold = NULL,
  ylevels = NULL,
  ptrans = NULL
)

## S3 method for class 'train'
CVpredict(
  fit,
  newdata,
  ...,
  type = "response",
  ptype = "pred",
  pthreshold = NULL,
  ylevels = NULL,
  ptrans = NULL
)

## S3 method for class 'bartMachine'
CVpredict(
  fit,
  newdata,
  ...,
  type = NULL,
  ptype = "pred",
  pthreshold = NULL,
  ylevels = NULL,
  ptrans = NULL
)

## S3 method for class 'wbart'
CVpredict(
  fit,
  newdata,
  ...,
  type = NULL,
  ptype = "pred",
  pthreshold = NULL,
  ylevels = NULL,
  ptrans = NULL
)

## S3 method for class 'lbart'
CVpredict(
  fit,
  newdata,
  ...,
  type = NULL,
  ptype = "pred",
  pthreshold = NULL,
  ylevels = NULL,
  ptrans = NULL
)

## S3 method for class 'pbart'
CVpredict(
  fit,
  newdata,
  ...,
  type = NULL,
  ptype = "pred",
  pthreshold = NULL,
  ylevels = NULL,
  ptrans = NULL
)

## S3 method for class 'bart'
CVpredict(
  fit,
  newdata,
  ...,
  type = NULL,
  ptype = "pred",
  pthreshold = NULL,
  ylevels = NULL,
  ptrans = NULL
)

## S3 method for class 'model_fit'
CVpredict(
  fit,
  ...,
  type = NULL,
  ptype = "pred",
  pthreshold = NULL,
  ylevels = NULL,
  ptrans = NULL,
  pinterval = NULL,
  pinterval_level = 0.95
)

## S3 method for class 'WrappedModel'
CVpredict(
  fit,
  newdata,
  ...,
  type = NULL,
  ptype = "pred",
  pthreshold = NULL,
  ylevels = NULL,
  ptrans = NULL,
  pinterval = NULL,
  pinterval_level = 0.95
)

## S3 method for class 'Learner'
CVpredict(
  fit,
  newdata,
  ...,
  type = NULL,
  ptype = "pred",
  pthreshold = NULL,
  ylevels = NULL,
  ptrans = NULL,
  pinterval = NULL,
  pinterval_level = 0.95
)

Arguments

fit

A fitted model

newdata

Where to calculate predictions.

...

extra arguments to predict

ptype

One of "pred","prob" or "probmatrix"

pthreshold

Used for calculating classes from probs, in the two class case

ylevels

The levels of the response, when it is a factor

ptrans

A function to apply to the result

pinterval

NULL, "confidence" or "prediction". Only for lm, parsnip, mlr(regression, confidence only)

pinterval_level

Defaults to 0.95

type

For some predict methods

n.trees

Used by CVpredict.gbm, passed to predict

s

Used by CVpredict.glmnet and CVpredict.cv.glmnet, passed to predict

makex

Used by CVpredict.glmnet and CVpredict.cv.glmnet. A function to construct xmatrix for predict.

batch_size

Used by CVpredict.keras.engine.training.Model, passed to predict

response

Used by CVpredict.keras.engine.training.Model. Name of response (optional)

predictors

Used by CVpredict.keras.engine.training.Model. Name of predictors

scale

Used by CVpredict for densities. If TRUE (default) rescales the conditional density to integrate to 1.

Details

This is a wrapper for predict used by condvis. When the model response is numeric, the result is a vector of predictions. When the model response is a factor the result depends on the value of ptype. If ptype="pred", the result is a factor. If also threshold is numeric, it is used to threshold a numeric prediction to construct the factor when the factor has two levels. For ptype="prob", the result is a vector of probabilities for the last factor level. For ptype="probmatrix", the result is a matrix of probabilities for each factor level.

Value

a vector of predictions, or a matrix when type is "probmatrix"

Methods (by class)

Examples

#Fit a model. 
f <- lm(Fertility~ ., data=swiss)
CVpredict(f)

#Fit a model with a factor response
swiss1 <- swiss
swiss1$Fertility <-  cut(swiss$Fertility, c(0,80,100))
levels(swiss1$Fertility)<- c("lo", "hi")
f <- glm(Fertility~ ., data=swiss1, family="binomial")
CVpredict(f) # by default gives a factor
CVpredict(f, ptype="prob") # gives prob of level hi
CVpredict(f, ptype="probmatrix") # gives prob of both levels

[Package condvis2 version 0.1.2 Index]