Beran {condSURV} | R Documentation |
Estimation of the conditional distribution function of the response, given the covariate under random censoring.
Description
Computes the conditional survival probability P(T > y|Z = z)
Usage
Beran(
time,
status,
covariate,
delta,
x,
y,
kernel = "gaussian",
bw,
lower.tail = FALSE
)
Arguments
time |
The survival time of the process. |
status |
Censoring indicator of the total time of the process; 0 if the total time is censored and 1 otherwise. |
covariate |
Covariate values for obtaining estimates for the conditional probabilities. |
delta |
Censoring indicator of the covariate. |
x |
The first time (or covariate value) for obtaining estimates for the conditional probabilities. If missing, 0 will be used. |
y |
The total time for obtaining estimates for the conditional probabilities. |
kernel |
A character string specifying the desired kernel. See details below for possible options. Defaults to "gaussian" where the gaussian density kernel will be used. |
bw |
A single numeric value to compute a kernel density bandwidth. |
lower.tail |
logical; if FALSE (default), probabilities are |
Details
Possible options for argument window are "gaussian", "epanechnikov", "tricube", "boxcar", "triangular", "quartic" or "cosine".
Author(s)
Luis Meira-Machado and Marta Sestelo
References
R. Beran. Nonparametric regression with randomly censored survival data. Technical report, University of California, Berkeley, 1981.
Examples
obj <- with(colonCS, survCS(time1, event1, Stime, event))
#P(T>y|age=45)
library(KernSmooth)
h <- dpik(colonCS$age)
Beran(time = obj$Stime, status = obj$event, covariate = colonCS$age,
x = 45, y = 730, bw = h)
#P(T<=y|age=45)
Beran(time = obj$Stime, status = obj$event, covariate = colonCS$age,
x = 45, y = 730, bw = h, lower.tail = TRUE)