ccls {conclust} | R Documentation |
Pairwise Constrained Clustering by Local Search
Description
This function takes an unlabeled dataset and two lists of must-link and cannot-link constraints as input and produce a clustering as output.
Usage
ccls(data, k = -1, mustLink, cantLink, maxIter = 1, tabuIter = 100, tabuLength = 20)
Arguments
data |
The unlabeled dataset. |
k |
Number of clusters. |
mustLink |
A list of must-link constraints |
cantLink |
A list of cannot-link constraints |
maxIter |
Number of iteration |
tabuIter |
Number of iteration in Tabu search |
tabuLength |
The number of elements in the Tabu list |
Details
This algorithm minimizes the clustering cost function using Tabu search.
Value
A vector that represents the labels (clusters) of the data points
Note
This is the first algorithm for pairwise constrained clustering by local search.
Author(s)
Tran Khanh Hiep Nguyen Minh Duc
References
Tran Khanh Hiep, Nguyen Minh Duc, Bui Quoc Trung (2016), Pairwise Constrained Clustering by Local Search.
See Also
Tran Khanh Hiep, Nguyen Minh Duc, Bui Quoc Trung (2016), Pairwise Constrained Clustering by Local Search.
Examples
data = matrix(c(0, 1, 1, 0, 0, 0, 1, 1), nrow = 4)
mustLink = matrix(c(1, 2), nrow = 1)
cantLink = matrix(c(1, 4), nrow = 1)
k = 2
pred = ckmeans(data, k, mustLink, cantLink)
pred