R6_par_ordered {comparer} | R Documentation |
R6 class for hyperparameter of discrete (factor) variable
Description
R6 class for hyperparameter of discrete (factor) variable
R6 class for hyperparameter of discrete (factor) variable
Super class
comparer::par_hype
-> par_ordered
Public fields
name
Name of the parameter, must match the input to 'eval_func'.
values
Vector of values
ggtrans
Transformation for ggplot, see ggplot2::scale_x_continuous()
lower
Lower bound of the parameter
upper
Upper bound of the parameter
Methods
Public methods
Method fromraw()
Function to convert from raw scale to transformed scale
Usage
R6_par_ordered$fromraw(x)
Arguments
x
Value of raw scale
Method toraw()
Function to convert from transformed scale to raw scale
Usage
R6_par_ordered$toraw(x)
Arguments
x
Value of transformed scale
Method fromint()
Convert from integer index to actual value
Usage
R6_par_ordered$fromint(x)
Arguments
x
Integer index
Method toint()
Convert from value to integer index
Usage
R6_par_ordered$toint(x)
Arguments
x
Value
Method generate()
Generate values in the raw space based on quantiles.
Usage
R6_par_ordered$generate(q)
Arguments
q
In [0,1].
Method getseq()
Get a sequence, uniform on the transformed scale
Usage
R6_par_ordered$getseq(n)
Arguments
n
Number of points. Ignored for discrete.
Method isvalid()
Check if input is valid for parameter
Usage
R6_par_ordered$isvalid(x)
Arguments
x
Parameter value
Method convert_to_mopar()
Convert this to a parameter for the mixopt R package.
Usage
R6_par_ordered$convert_to_mopar(raw_scale = FALSE)
Arguments
raw_scale
Should it be on the raw scale?
Method new()
Create a hyperparameter with uniform distribution
Usage
R6_par_ordered$new(name, values)
Arguments
name
Name of the parameter, must match the input to 'eval_func'.
values
The values the variable can take on.
Method print()
Print details of the object.
Usage
R6_par_ordered$print(...)
Arguments
...
not used
Method clone()
The objects of this class are cloneable with this method.
Usage
R6_par_ordered$clone(deep = FALSE)
Arguments
deep
Whether to make a deep clone.
Examples
p1 <- par_ordered('x1', c('a', 'b', 'c'))
class(p1)
print(p1)