| cointRegIM {cointReg} | R Documentation |
Integrated Modified OLS
Description
Computes the Vogelsang and Wagner (2014) Integrated Modified OLS estimator.
Usage
cointRegIM(x, y, deter, selector = 1, t.test = TRUE, kernel = c("ba",
"pa", "qs", "tr"), bandwidth = c("and", "nw"), check = TRUE, ...)
Arguments
x |
[ |
y |
[ |
deter |
[ |
selector |
[ |
t.test |
[ |
kernel |
[ |
bandwidth |
[ |
check |
[ |
... |
Arguments passed to |
Details
The equation for which the IM-OLS estimator is calculated (type 1):
S_y = \delta \cdot S_{D} + \beta \cdot S_{x} + \gamma \cdot x + u
where S_y, S_x and S_D are the cumulated
sums of y, x and D (with D as the deterministics
matrix).
Then \theta = (\delta', \beta', \gamma')' is the full parameter vector.
The equation for which the IM-OLS estimator is calculated (type 2):
S_y = \delta \cdot S_D + \beta \cdot S_x + \gamma \cdot x +
\lambda \cdot Z + u
where S_y, S_x and S_D are the cumulated
sums of y, x and D (with D as the deterministics
matrix) and Z as defined in equation (19) in Vogelsang and Wagner
(2015).
Then \theta = (\delta', \beta', \gamma', \lambda')' is the full
parameter vector.
Value
[cointReg]. List with components:
delta[numeric]-
coefficients of the deterministics (cumulative sum
S_{deter}) beta[numeric]-
coefficients of the regressors (cumulative sum
S_{x}) gamma[numeric]-
coefficients of the regressors (original regressors
x) theta[numeric]-
combined coefficients of
beta,delta sd.theta[numeric]-
standard errors for the
thetacoefficients t.theta[numeric]-
t-values for the
thetacoefficients p.theta[numeric]-
p-values for the
thetacoefficients theta.all[numeric]-
combined coefficients of
beta,delta,gamma residuals[numeric]-
IM-OLS residuals. Attention: These are the first differences of
S_u– the original residuals are stored inu.plus. u.plus[numeric]-
IM-OLS residuals, not differenced. See
residualsabove. omega.u.v[numeric]-
conditional long-run variance based on OLS residuals, via
cointRegFM(in case of argumentt.testisTRUE) orNULL varmat[matrix]-
variance-covariance matrix
Omega[matrix]-
NULL(no long-run variance matrix for this regression type) bandwidth[list]-
numberandnameof bandwidth ift.test = TRUE kernel[character]-
abbr. name of kernel type if
t.test = TRUE delta2[numeric]-
coefficients of the deterministics (cumulative sum
S_{deter}) for regression type 2 beta2[numeric]-
coefficients of the regressors (cumulative sum
S_{x}) for regression type 2 gamma2[numeric]-
coefficients of the regressors (original regressors
x) for regression type 2 lambda2[numeric]-
coefficients of the Z regressors for regression type 2
theta2[numeric]-
combined coefficients of
beta2,delta2,gamma2andlambda2for regression type 2 u.plus2[numeric]-
IM-OLS residuals for regression type 2
References
Vogelsang, T.J. and M. Wagner (2014): "Integrated Modified OLS Estimation and Fixed-b Inference for Cointegrating Regressions," Journal of Econometrics, 148, 741–760, DOI:10.1016/j.jeconom.2013.10.015.
See Also
Other cointReg: cointRegD,
cointRegFM, cointReg,
plot.cointReg, print.cointReg
Examples
set.seed(1909)
x1 = cumsum(rnorm(100, mean = 0.05, sd = 0.1))
x2 = cumsum(rnorm(100, sd = 0.1)) + 1
x3 = cumsum(rnorm(100, sd = 0.2)) + 2
x = cbind(x1, x2, x3)
y = x1 + x2 + x3 + rnorm(100, sd = 0.2) + 1
deter = cbind(level = 1, trend = 1:100)
test = cointRegIM(x, y, deter, selector = c(1, 2), t.test = TRUE,
kernel = "ba", bandwidth = "and")
print(test)