| Transformations {coin} | R Documentation | 
Functions for Data Transformation
Description
Transformations for factors and numeric variables.
Usage
id_trafo(x)
rank_trafo(x, ties.method = c("mid-ranks", "random"))
normal_trafo(x, ties.method = c("mid-ranks", "average-scores"))
median_trafo(x, mid.score = c("0", "0.5", "1"))
savage_trafo(x, ties.method = c("mid-ranks", "average-scores"))
consal_trafo(x, ties.method = c("mid-ranks", "average-scores"), a = 5)
koziol_trafo(x, ties.method = c("mid-ranks", "average-scores"), j = 1)
klotz_trafo(x, ties.method = c("mid-ranks", "average-scores"))
mood_trafo(x, ties.method = c("mid-ranks", "average-scores"))
ansari_trafo(x, ties.method = c("mid-ranks", "average-scores"))
fligner_trafo(x, ties.method = c("mid-ranks", "average-scores"))
logrank_trafo(x, ties.method = c("mid-ranks", "Hothorn-Lausen",
                                 "average-scores"),
              weight = logrank_weight, ...)
logrank_weight(time, n.risk, n.event,
               type = c("logrank", "Gehan-Breslow", "Tarone-Ware",
                        "Peto-Peto", "Prentice", "Prentice-Marek",
                        "Andersen-Borgan-Gill-Keiding", "Fleming-Harrington",
                        "Gaugler-Kim-Liao", "Self"),
               rho = NULL, gamma = NULL)
f_trafo(x)
of_trafo(x, scores = NULL)
zheng_trafo(x, increment = 0.1)
maxstat_trafo(x, minprob = 0.1, maxprob = 1 - minprob)
fmaxstat_trafo(x, minprob = 0.1, maxprob = 1 - minprob)
ofmaxstat_trafo(x, minprob = 0.1, maxprob = 1 - minprob)
trafo(data, numeric_trafo = id_trafo, factor_trafo = f_trafo,
      ordered_trafo = of_trafo, surv_trafo = logrank_trafo,
      var_trafo = NULL, block = NULL)
mcp_trafo(...)
Arguments
| x | an object of class  | 
| ties.method | a character, the method used to handle ties.  The score generating function
either uses the mid-ranks ( | 
| mid.score | a character, the score assigned to observations exactly equal to the median:
either 0 ( | 
| a | a numeric vector, the values taken as the constant  | 
| j | a numeric, the value taken as the constant  | 
| weight | a function where the first three arguments must correspond to  | 
| time | a numeric vector, the ordered distinct time points. | 
| n.risk | a numeric vector, the number of subjects at risk at each time point
specified in  | 
| n.event | a numeric vector, the number of events at each time point specified in
 | 
| type | a character, one of  | 
| rho | a numeric vector, the  | 
| gamma | a numeric vector, the  | 
| scores | a numeric vector or list, the scores corresponding to each level of an
ordered factor.  Defaults to  | 
| increment | a numeric, the score increment between the order-restricted sets of scores.
A fraction greater than 0, but smaller than or equal to 1.  Defaults to
 | 
| minprob | a numeric, a fraction between 0 and 0.5; see  | 
| maxprob | a numeric, a fraction between 0.5 and 1; see  | 
| data | an object of class  | 
| numeric_trafo | a function to be applied to elements of class  | 
| factor_trafo | a function to be applied to elements of class  | 
| ordered_trafo | a function to be applied to elements of class  | 
| surv_trafo | a function to be applied to elements of class  | 
| var_trafo | an optional named list of functions to be applied to the corresponding
variables in  | 
| block | an optional factor whose levels are interpreted as blocks.   | 
| ... | 
 | 
Details
The utility functions documented here are used to define specialized test procedures.
id_trafo() is the identity transformation.
rank_trafo(), normal_trafo(), median_trafo(),
savage_trafo(), consal_trafo() and koziol_trafo() compute
rank (Wilcoxon) scores, normal (van der Waerden) scores, median (Mood-Brown)
scores, Savage scores, Conover-Salsburg scores (see neuropathy)
and Koziol-Nemec scores, respectively, for location problems.
klotz_trafo(), mood_trafo(), ansari_trafo() and
fligner_trafo() compute Klotz scores, Mood scores, Ansari-Bradley
scores and Fligner-Killeen scores, respectively, for scale problems.
logrank_trafo() computes weighted logrank scores for right-censored
data, allowing for a user-defined weight function through the weight
argument (see GTSG).
f_trafo() computes dummy matrices for factors and of_trafo()
assigns scores to ordered factors.  For ordered factors with two levels, the
scores are normalized to the [0, 1] range.  zheng_trafo()
computes a finite collection of order-restricted scores for ordered factors
(see jobsatisfaction, malformations and
vision).
maxstat_trafo(), fmaxstat_trafo() and ofmaxstat_trafo()
compute scores for cutpoint problems (see maxstat_test()).
trafo() applies its arguments to the elements of data according
to the classes of the elements.  A trafo() function with modified
default arguments is usually supplied to independence_test() via
the xtrafo or ytrafo arguments.  Fine tuning, i.e., different
transformations for different variables, is possible by supplying a named list
of functions to the var_trafo argument.
mcp_trafo() computes contrast matrices for factors.
Value
A numeric vector or matrix with nrow(x) rows and an arbitrary number of
columns.  For trafo(), a named matrix with nrow(data) rows and an
arbitrary number of columns.
Note
Starting with coin version 1.1-0, all transformation functions are now
passing through missing values (i.e., NAs).  Furthermore,
median_trafo() and logrank_trafo() are now increasing
functions (in conformity with most other transformations in this package).
Examples
## Dummy matrix, two-sample problem (only one column)
f_trafo(gl(2, 3))
## Dummy matrix, K-sample problem (K columns)
x <- gl(3, 2)
f_trafo(x)
## Score matrix
ox <- as.ordered(x)
of_trafo(ox)
of_trafo(ox, scores = c(1, 3:4))
of_trafo(ox, scores = list(s1 = 1:3, s2 = c(1, 3:4)))
zheng_trafo(ox, increment = 1/3)
## Normal scores
y <- runif(6)
normal_trafo(y)
## All together now
trafo(data.frame(x = x, ox = ox, y = y), numeric_trafo = normal_trafo)
## The same, but allows for fine-tuning
trafo(data.frame(x = x, ox = ox, y = y), var_trafo = list(y = normal_trafo))
## Transformations for maximally selected statistics
maxstat_trafo(y)
fmaxstat_trafo(x)
ofmaxstat_trafo(ox)
## Apply transformation blockwise (as in the Friedman test)
trafo(data.frame(y = 1:20), numeric_trafo = rank_trafo, block = gl(4, 5))
## Multiple comparisons
dta <- data.frame(x)
mcp_trafo(x = "Tukey")(dta)
## The same, but useful when specific contrasts are desired
K <- rbind("2 - 1" = c(-1,  1, 0),
           "3 - 1" = c(-1,  0, 1),
           "3 - 2" = c( 0, -1, 1))
mcp_trafo(x = K)(dta)