dcoga_approx {coga} | R Documentation |
Convolution of Gamma distribuitons (Approximation Method)
Description
Density and distribution function of convolution of gamma distributions
are calculated based on approximation method from Barnabani(2017), which
gives us the approximate result and faster evaluation than dcoga
and pcoga
during three or more variables case. **So, we recommend
these functions for three or more varibales case with approximate result.**
Usage
dcoga_approx(x, shape, rate)
pcoga_approx(x, shape, rate)
Arguments
x |
Quantiles. |
shape |
Numerical vector of shape parameters for each gamma distributions, all shape parameters should be larger than or equal to 0, with at least three non-zero. |
rate |
Numerical vector of rate parameters for each gamma distributions, all rate parameters should be larger than 0. |
Author(s)
Chaoran Hu
References
Barnabani, M. (2017). An approximation to the convolution of gamma distributions. Communications in Statistics - Simulation and Computation 46(1), 331-343.
Examples
## Example 1: Correctness check
set.seed(123)
## do grid
y <- rcoga(100000, c(3,4,5), c(2,3,4))
grid <- seq(0, 15, length.out=100)
## calculate pdf and cdf
pdf <- dcoga_approx(grid, shape=c(3,4,5), rate=c(2,3,4))
cdf <- pcoga_approx(grid, shape=c(3,4,5), rate=c(2,3,4))
## plot pdf
plot(density(y), col="blue")
lines(grid, pdf, col="red")
## plot cdf
plot(ecdf(y), col="blue")
lines(grid, cdf, col="red")
## Example 2: Show parameter recycling
## these pairs give us the same results
dcoga_approx(1:5, c(1, 2), c(1, 3, 4, 2, 5))
dcoga_approx(1:5, c(1, 2, 1, 2, 1), c(1, 3, 4, 2, 5))
pcoga_approx(1:5, c(1, 3, 5, 2, 2), c(3, 5))
pcoga_approx(1:5, c(1, 3, 5, 2, 2), c(3, 5, 3, 5, 3))