classify {coder} | R Documentation |
Classify codified data
Description
This is the second step of codify() %>% classify() %>% index()
.
Hence, the function takes a codified data set and classify each case based on
relevant codes as identified by the classification scheme provided by a
classcodes
object.
Usage
classify(codified, cc, ..., cc_args = list())
## Default S3 method:
classify(codified, cc, ..., cc_args = list())
## S3 method for class 'codified'
classify(codified, ...)
## S3 method for class 'data.frame'
classify(codified, ...)
## S3 method for class 'data.table'
classify(codified, cc, ..., id, code, cc_args = list())
Arguments
codified |
output from |
cc |
|
... |
arguments passed between methods |
cc_args |
List with named arguments passed to
|
code , id |
name of code/id columns (in |
Value
Object of class "classified". Inheriting from a Boolean matrix with
one row for each element/row of codified
and columns for each class with corresponding class names (according to the
classcodes
object). Note, however, that print.classified()
preview
this output as a tibble.
See Also
as.data.frame.classified()
, as.data.table.classified()
and
as.matrix.classified()
, print.classified()
Other verbs:
categorize()
,
codify()
,
index_fun
Examples
# classify.default() ------------------------------------------------------
# Classify individual ICD10-codes by Elixhauser
classify(c("C80", "I20", "unvalid_code"), "elixhauser")
# classify.codified() -----------------------------------------------------
# Prepare some codified data with ICD-10 codes during 1 year (365 days)
# before surgery
x <-
codify(
ex_people,
ex_icd10,
id = "name",
code = "icd10",
date = "surgery",
days = c(-365, 0),
code_date = "admission"
)
# Classify those patients by the Charlson and Elixhasuer comorbidity indices
classify(x, "charlson") # classcodes object by name ...
classify(x, coder::elixhauser) # ... or by the object itself
# -- start/stop --
# Assume that a prefix "ICD-10 = " is used for all codes and that some
# additional numbers are added to the end
x$icd10 <- paste0("ICD-10 = ", x$icd10)
# Set start = FALSE to identify codes which are not necessarily found in the
# beginning of the string
classify(x, "charlson", cc_args = list(start = FALSE))
# -- regex --
# Use a different version of Charlson (as formulated by regular expressions
# according to the Royal College of Surgeons (RCS) by passing arguments to
# `set_classcodes()` using the `cc_args` argument
y <-
classify(
x,
"charlson",
cc_args = list(regex = "icd10_rcs")
)
# -- tech_names --
# Assume that we want to compare the results using the default ICD-10
# formulations (from Quan et al. 2005) and the RCS version and that the result
# should be put into the same data frame. We can use `tech_names = TRUE`
# to distinguish variables with otherwise similar names
cc <- list(tech_names = TRUE) # Prepare sommon settings
compare <-
merge(
classify(x, "charlson", cc_args = cc),
classify(x, "charlson", cc_args = c(cc, regex = "icd10_rcs"))
)
names(compare) # long but informative and distinguishable column names
# classify.data.frame() / classify.data.table() ------------------------
# Assume that `x` is a data.frame/data.table without additional attributes
# from `codify()` ...
xdf <- as.data.frame(x)
xdt <- data.table::as.data.table(x)
# ... then the `id` and `code` columns must be specified explicitly
classify(xdf, "charlson", id = "name", code = "icd10")
classify(xdt, "charlson", id = "name", code = "icd10")