cocoBoot {coconots} | R Documentation |
Bootstrap Based Model Assessment Procedure
Description
Model checking procedure emphasizing reproducibility in fitted models to provide an overall evaluation of fit as proposed by Tsay (1992).
Usage
cocoBoot(
coco,
numb.lags = 21,
rep.Bootstrap = 1000,
conf.alpha = 0.05,
julia = FALSE,
julia_seed = NULL
)
Arguments
coco |
An object of class coco |
numb.lags |
Number of lags for which to compute autocorrelations |
rep.Bootstrap |
Number of bootstrap replicates to use |
conf.alpha |
Confidence level for the quantile intervals |
julia |
if TRUE, the bootstrap is run with Julia. |
julia_seed |
Seed for the julia implementation. Only used if julia equals TRUE. |
Details
Computes bootstrap confidence intervals for the autocorrelations of a fitted model.
Value
an object of class cocoBoot. It contains the bootstraped confidence intervals of the autocorrelations and information on the model specifications.
References
Tsay, R. S. (1992) Model checking via parametric bootstraps in time series analysis. Applied Statistics 41, 1–15.
Examples
lambda <- 1
alpha <- 0.4
set.seed(12345)
data <- cocoSim(order = 1, type = "Poisson", par = c(lambda, alpha), length = 100)
fit <- cocoReg(order = 1, type = "Poisson", data = data)
#assessment using bootstrap - R implementation
boot_r <- cocoBoot(fit, rep.Bootstrap=400)
[Package coconots version 1.1.3 Index]