cmvnorm-package {cmvnorm} | R Documentation |
The Complex Multivariate Gaussian Distribution
Description
Various utilities for the complex multivariate Gaussian distribution and complex Gaussian processes.
Details
The DESCRIPTION file:
Package: | cmvnorm |
Type: | Package |
Title: | The Complex Multivariate Gaussian Distribution |
Version: | 1.0-7 |
Authors@R: | person(given=c("Robin", "K. S."), family="Hankin", role = c("aut","cre"), email="hankin.robin@gmail.com", comment = c(ORCID = "0000-0001-5982-0415")) |
Depends: | emulator (>= 1.2-21) |
Suggests: | knitr |
Imports: | elliptic |
Maintainer: | Robin K. S. Hankin <hankin.robin@gmail.com> |
Description: | Various utilities for the complex multivariate Gaussian distribution and complex Gaussian processes. |
VignetteBuilder: | knitr |
License: | GPL-2 |
URL: | https://github.com/RobinHankin/cmvnorm |
BugReports: | https://github.com/RobinHankin/cmvnorm/issues |
Author: | Robin K. S. Hankin [aut, cre] (<https://orcid.org/0000-0001-5982-0415>) |
Index of help topics:
Im<- Manipulate real or imaginary components of an object Mvcnorm Multivariate complex Gaussian density and random deviates cmvnorm-package The Complex Multivariate Gaussian Distribution corr_complex Complex Gaussian processes isHermitian Is a Matrix Hermitian? var Variance and standard deviation of complex vectors wishart The complex Wishart distribution
Generalizing the real multivariate Gaussian distribution to the complex case is not straightforward but one common approach is to replace the real symmetric variance matrix with a Hermitian positive-definite matrix. The cmvnorm package provides some functionality for the resulting density function.
Author(s)
NA
Maintainer: Robin K. S. Hankin <hankin.robin@gmail.com>
References
N. R. Goodman 1963. “Statistical analysis based on a certain multivariate complex Gaussian distribution”. The Annals of Mathematical Statistics. 34(1): 152–177
R. K. S. Hankin 2015. “The complex multivariate Gaussian distribution”. R News, volume 7, number 1.
Examples
S1 <- 4+diag(5)
S2 <- S1
S2[1,5] <- 4+1i
S2[5,1] <- 4-1i # Hermitian
rcmvnorm(10,sigma=S1)
rcmvnorm(10,mean=rep(1i,5),sigma=S2)
dcmvnorm(rep(1,5),sigma=S2)