simp38 {cmna} | R Documentation |
Use Simpson's 3/8 rule to integrate a function
simp38(f, a, b, m = 100)
f |
function to integrate |
a |
the a-bound of integration |
b |
the b-bound of integration |
m |
the number of subintervals to calculate |
The simp38
function uses Simpson's 3/8 rule to calculate the
integral of the function f
over the interval from a
to b
. The parameter m
sets the number of intervals
to use when evaluating. Additional options are passed to the
function f
when evaluating.
the value of the integral
Other integration:
adaptint()
,
gaussint()
,
giniquintile()
,
mcint()
,
midpt()
,
revolution-solid
,
romberg()
,
simp()
,
trap()
Other newton-cotes:
adaptint()
,
giniquintile()
,
midpt()
,
romberg()
,
simp()
,
trap()
f <- function(x) { sin(x)^2 + log(x) }
simp38(f, 1, 10, m = 10)
simp38(f, 1, 10, m = 100)
simp38(f, 1, 10, m = 1000)