gradient {cmna} | R Documentation |
Gradient descent
Description
Use gradient descent to find local minima
Usage
graddsc(fp, x, h = 0.001, tol = 1e-04, m = 1000)
gradasc(fp, x, h = 0.001, tol = 1e-04, m = 1000)
gd(fp, x, h = 100, tol = 1e-04, m = 1000)
Arguments
fp |
function representing the derivative of |
x |
an initial estimate of the minima |
h |
the step size |
tol |
the error tolerance |
m |
the maximum number of iterations |
Details
Gradient descent can be used to find local minima of functions. It
will return an approximation based on the step size h
and
fp
. The tol
is the error tolerance, x
is the
initial guess at the minimum. This implementation also stops after
m
iterations.
Value
the x
value of the minimum found
See Also
Other optimz:
bisection()
,
goldsect
,
hillclimbing()
,
newton()
,
sa()
,
secant()
Examples
fp <- function(x) { x^3 + 3 * x^2 - 1 }
graddsc(fp, 0)
f <- function(x) { (x[1] - 1)^2 + (x[2] - 1)^2 }
fp <-function(x) {
x1 <- 2 * x[1] - 2
x2 <- 8 * x[2] - 8
return(c(x1, x2))
}
gd(fp, c(0, 0), 0.05)
[Package cmna version 1.0.5 Index]