gdls {cmna} | R Documentation |
Least squares with graident descent
Description
Solve least squares with graident descent
Usage
gdls(A, b, alpha = 0.05, tol = 1e-06, m = 1e+05)
Arguments
A |
a square matrix representing the coefficients of a linear system |
b |
a vector representing the right-hand side of the linear system |
alpha |
the learning rate |
tol |
the expected error tolerance |
m |
the maximum number of iterations |
Details
gdls
solves a linear system using gradient descent.
Value
the modified matrix
See Also
Other linear:
choleskymatrix()
,
detmatrix()
,
invmatrix()
,
iterativematrix
,
lumatrix()
,
refmatrix()
,
rowops
,
tridiagmatrix()
,
vecnorm()
Examples
head(b <- iris$Sepal.Length)
head(A <- matrix(cbind(1, iris$Sepal.Width, iris$Petal.Length, iris$Petal.Width), ncol = 4))
gdls(A, b, alpha = 0.05, m = 10000)
[Package cmna version 1.0.5 Index]