SpecifyCoefficient {cmm} | R Documentation |
SpecifyCoefficient
Description
Gives the generalized exp-log specification for various coefficients
Usage
SpecifyCoefficient(name, arg = NULL, rep = 1, data = NULL)
Arguments
name |
character: name of desired coefficient |
arg |
an argument specific to the coefficient, e.g., a vector of scores or number of rows and colums. |
data |
data set. Necessary for MEL estimation |
rep |
number of repetitions of the coefficient |
Details
Currently the following coefficients are implemented:
SpecifyCoefficient("Mean",arg = scores) SpecifyCoefficient("Variance", arg = scores) SpecifyCoefficient("StandardDeviation", arg = scores) SpecifyCoefficient("GiniMeanDifference", arg = scores) SpecifyCoefficient("Entropy", arg = k) SpecifyCoefficient("DiversityIndex", arg = k) SpecifyCoefficient("Covariance",arg = list(xscores,yscores)) SpecifyCoefficient("Correlation",arg = list(xscores,yscores)) SpecifyCoefficient("KendallTau",arg = list(r,c)) SpecifyCoefficient("GoodmanKruskalGammma",arg = list(r,c)) SpecifyCoefficient("CohenKappa",r) SpecifyCoefficient("CronbachAlpha",arg = list(items,item.scores), data = X) SpecifyCoefficient("Hij") SpecifyCoefficient("DifferenceInProportions",arg = m) SpecifyCoefficient("LogOddsRatio") SpecifyCoefficient("LoglinearParameters",arg = dim) SpecifyCoefficient("Probabilities",arg = dim) SpecifyCoefficient("LogProbabilities",arg = dim) SpecifyCoefficient("ConditionalProbabilities",arg = list(var,condvar,dim)) SpecifyCoefficient("AllMokkenHj", arg = list(items,item.scores), data = X) SpecifyCoefficient("MokkenH", arg = list(items,item.scores), data = X) SpecifyCoefficient("OrdinalLocation-A", arg = arg) SpecifyCoefficient("OrdinalLocation-L", arg = arg) SpecifyCoefficient("OrdinalDispersion-A", arg = arg) SpecifyCoefficient("OrdinalDispersion-L", arg = arg)
Here, scores
is a score vector, e.g., c(1,2,3,4,5)
; k
is the number of cells in a table;
r
is the number of rows and columns of a square table; dim
is the dimension of the table; items
are the columns
in the data matrix that should be used for compuing the statistic; item.scores
is the number of item scores (e.g., 2 for dichotomous items,
or 5 for Likert items); X
is the NxJ data matrix. "LoglinearParameters"
gives the highest order loglinear parameters (loglinear parameters can also be obtained as output of SampleStatistics
,
ModelStatistics
or MarginalModelFit
by setting ShowParameters=TRUE
and the coefficients equal to log probabilities.
Value
output is of the form list(matlist,funlist)
where matlist
is a list of matrices and funlist
is a list of function names,
which can currently be "log"
, "exp"
, "identity"
, "xlogx"
(i.e., f(x)=x\log(x)
),
"xbarx"
(i.e., f(x)=x(1-x)
), "sqrt"
Author(s)
W. P. Bergsma w.p.bergsma@lse.ac.uk
References
Bergsma, W. P. (1997). Marginal models for categorical data. Tilburg, The Netherlands: Tilburg University Press. http://stats.lse.ac.uk/bergsma/pdf/bergsma_phdthesis.pdf
Bergsma, W. P., Croon, M. A., & Hagenaars, J. A. P. (2009). Marginal models for dependent, clustered, and longitudunal categorical data. Berlin: Springer.
See Also
ConstraintMatrix
, DesignMatrix
, MarginalMatrix
Examples
SpecifyCoefficient("Mean",arg = c(1,2,3))
SpecifyCoefficient("Variance",arg = c(1,2,3))
SpecifyCoefficient("StandardDeviation",arg = c(1,2,3))
SpecifyCoefficient("GiniMeanDifference",arg = c(1,2,3))
SpecifyCoefficient("Entropy",arg = 5)
SpecifyCoefficient("DiversityIndex",arg = 5)
SpecifyCoefficient("Covariance",arg = list(c(1,2,3),c(1,2,3)))
SpecifyCoefficient("Correlation",arg = list(c(1,2,3),c(1,2,3)))
SpecifyCoefficient("KendallTau",arg = list(3,4))
SpecifyCoefficient("GoodmanKruskalGammma",arg = list(3,4))
SpecifyCoefficient("CohenKappa",arg = 3)
SpecifyCoefficient("DifferenceInProportions",arg = 1)
SpecifyCoefficient("LogOddsRatio",arg = 1)
SpecifyCoefficient("LoglinearParameters",arg = c(3,3))
SpecifyCoefficient("Probabilities",arg = 8)
SpecifyCoefficient("LogProbabilities",arg = 8)
# conditional probabilities for 3x3 table, conditioning on first variable
SpecifyCoefficient("ConditionalProbabilities",arg = list(c(1,2),c(1),c(3,3)))