condMDS {cml} | R Documentation |
Conditional Multidimensional Scaling
Description
Wrapper of condSmacof
, which finds a low-dimensional embedding of a given distance/dissimilarity matrix, conditioning on available manifold information.
Usage
condMDS(d, V, u.dim, W,
method = c('matrix', 'vector'), exact = TRUE,
it.max = 1000, gamma = 1e-05,
init = c('none', 'eigen', 'user'),
U.start, B.start)
Arguments
d |
a distance/dissimilarity matrix of N entities (or a |
V |
an Nxq matrix of q manifold auxiliary parameter values of the N entities. |
u.dim |
the embedding dimension. |
W |
an NxN symmetric weight matrix. If not given, a matrix of ones will be used. |
method |
if |
exact |
only relevant if |
it.max |
the max number of conditional SMACOF iterations. |
gamma |
conditional SMACOF stops early if the reduction of normalized conditional stress is less than |
init |
initialization method. |
U.start |
user-defined starting values for the embedding (when |
B.start |
starting |
Value
U |
the embedding result. |
B |
the estimated |
stress |
Normalized conditional stress value. |
sigma |
the conditional stress value at each iteration. |
init |
the value of the |
U.start |
the starting values for the embedding. |
B.start |
starting values for the |
method |
the value of the |
exact |
the value of the |
Author(s)
Anh Tuan Bui
References
Bui, A.T. (2021). Dimension Reduction with Prior Information for Knowledge Discovery. arXiv:2111.13646. https://arxiv.org/abs/2111.13646.
Bui, A. T. (2022). A Closed-Form Solution for Conditional Multidimensional Scaling. Pattern Recognition Letters 164, 148-152. https://doi.org/10.1016/j.patrec.2022.11.007
See Also
condSmacof, condMDSeigen, condIsomap
Examples
# see help(cml)