plot.cluspcamix {clustrd}R Documentation

Plotting function for cluspcamix() output.

Description

Plotting function that creates a scatterplot of the objects, a correlation circle of the variables or a biplot of both objects and variables. Optionally, for metric variables, it returns a parallel coordinate plot showing cluster means and for categorical variables, a series of barplots showing the standardized residuals per attribute for each cluster.

Usage

## S3 method for class 'cluspcamix'
plot(x, dims = c(1, 2), cludesc = FALSE, 
topstdres = 20, objlabs = FALSE, attlabs = NULL, attcatlabs = NULL, 
subplot = FALSE, what = c(TRUE,TRUE), max.overlaps = 10, ...)

Arguments

x

Object returned by cluspcamix()

dims

Numerical vector of length 2 indicating the dimensions to plot on horizontal and vertical axes respectively; default is first dimension horizontal and second dimension vertical

what

Vector of two logical values specifying the contents of the plots. First entry indicates whether a scatterplot of the objects and cluster centroids is displayed and the second entry whether a correlation circle of the variables is displayed. The default is c(TRUE, TRUE) and the resultant plot is a biplot of both objects and variables

cludesc

A logical value indicating if a parallel coordinate plot showing cluster means is produced (default = FALSE)

topstdres

Number of largest standardized residuals used to describe each cluster (default = 20). Works only in combination with cludesc = TRUE

subplot

A logical value indicating whether a subplot with the full distribution of the standardized residuals will appear at the bottom left corner of the corresponding plots. Works only in combination with cludesc = TRUE

objlabs

A logical value indicating whether object labels will be plotted; if TRUE row names of the data matrix are used (default = FALSE). Warning: when TRUE, execution time of the plotting function will increase dramatically as the number of objects gets larger

attlabs

Vector of custom labels of continuous attributes; if not provided, default labeling is applied

attcatlabs

Vector of custom labels of categorical attributes (categories); if not provided, default labeling is applied

max.overlaps

Maximum number of text labels allowed to overlap. Defaults to 10

...

Further arguments to be transferred to cluspcamix()

Value

The function returns a ggplot2 scatterplot of the solution obtained via cluspcamix() that can be further customized using the ggplot2 package. When cludesc = TRUE, for metric variables, the function also returns a ggplot2 parallel coordinate plot and for categorical variables, a series of ggplot2 barplots showing the largest (or all) standardized residuals per attribute for each cluster.

References

van de Velden, M., Iodice D'Enza, A., & Markos, A. (2019). Distance-based clustering of mixed data. Wiley Interdisciplinary Reviews: Computational Statistics, e1456.

Vichi, M., Vicari, D., & Kiers, H. A. L. (2019). Clustering and dimension reduction for mixed variables. Behaviormetrika. doi:10.1007/s41237-018-0068-6.

See Also

plot.clusmca, plot.cluspca

Examples

data(diamond)
#Mixed Reduced K-means solution with 3 clusters in 2 dimensions 
#after 10 random starts
outmixedRKM = cluspcamix(diamond, 3, 2, method = "mixedRKM", nstart = 10)
#Scatterplot (dimensions 1 and 2)
plot(outmixedRKM, cludesc = TRUE)

[Package clustrd version 1.4.0 Index]