clusterability {clusterability} | R Documentation |
The clusterabilitytest
function can test for
clusterability of a dataset, and the print
function
to display output in the console. Below we include code to use with the provided example
datasets. Please see the clusterabilitytest
function for documentation on
available parameters.
# Normals1
data(normals1)
normals1 <- normals1[,-3]
norm1_dippca <- clusterabilitytest(normals1, "dip")
norm1_dipdist <- clusterabilitytest(normals1, "dip", distance_standardize = "NONE",
reduction = "distance")
norm1_silvpca <- clusterabilitytest(normals1, "silverman", s_setseed = 123)
norm1_silvdist <- clusterabilitytest(normals1, "silverman", distance_standardize = "NONE",
reduction = "distance", s_setseed = 123)
print(norm1_dippca)
print(norm1_dipdist)
print(norm1_silvpca)
print(norm1_silvdist)
# Normals2
data(normals2)
normals2 <- normals2[,-3]
norm2_dippca <-
clusterabilitytest(normals2, "dip")
norm2_dipdist <-
clusterabilitytest(normals2, "dip", reduction = "distance", distance_standardize = "NONE")
norm2_silvpca <- clusterabilitytest(normals2, "silverman", s_setseed = 123)
norm2_silvdist <- clusterabilitytest(normals2, "silverman", reduction = "distance",
distance_standardize = "NONE", s_setseed = 123)
print(norm2_dippca)
print(norm2_dipdist)
print(norm2_silvpca)
print(norm2_silvdist)
# Normals3
data(normals3)
normals3 <- normals3[,-3]
norm3_dippca <- clusterabilitytest(normals3, "dip")
norm3_dipdist <- clusterabilitytest(normals3, "dip", reduction = "distance",
distance_standardize = "NONE")
norm3_silvpca <- clusterabilitytest(normals3, "silverman", s_setseed = 123)
norm3_silvdist <- clusterabilitytest(normals3, "silverman", reduction = "distance",
distance_standardize = "NONE", s_setseed = 123)
print(norm3_dippca)
print(norm3_dipdist)
print(norm3_silvpca)
print(norm3_silvdist)
# Normals4
data(normals4)
normals4 <- normals4[,-4]
norm4_dippca <- clusterabilitytest(normals4, "dip")
norm4_dipdist <- clusterabilitytest(normals4, "dip", reduction = "distance",
distance_standardize = "NONE")
norm4_silvpca <- clusterabilitytest(normals4, "silverman", s_setseed = 123)
norm4_silvdist <- clusterabilitytest(normals4, "silverman", reduction = "distance",
distance_standardize = "NONE", s_setseed = 123)
print(norm4_dippca)
print(norm4_dipdist)
print(norm4_silvpca)
print(norm4_silvdist)
# Normals5
data(normals5)
normals5 <- normals5[,-4]
norm5_dippca <- clusterabilitytest(normals5, "dip")
norm5_dipdist <- clusterabilitytest(normals5, "dip", reduction = "distance",
distance_standardize = "NONE")
norm5_silvpca <- clusterabilitytest(normals5, "silverman", s_setseed = 123)
norm5_silvdist <- clusterabilitytest(normals5, "silverman", reduction = "distance",
distance_standardize = "NONE", s_setseed = 123)
print(norm5_dippca)
print(norm5_dipdist)
print(norm5_silvpca)
print(norm5_silvdist)
# iris
data(iris)
newiris <- iris[,c(1:4)]
iris_dippca <- clusterabilitytest(newiris, "dip")
iris_dipdist <- clusterabilitytest(newiris, "dip", reduction = "distance",
distance_standardize = "NONE")
iris_silvpca <- clusterabilitytest(newiris, "silverman", s_setseed = 123)
iris_silvdist <- clusterabilitytest(newiris, "silverman", reduction = "distance",
distance_standardize = "NONE", s_setseed = 123)
print(iris_dippca)
print(iris_dipdist)
print(iris_silvpca)
print(iris_silvdist)
# cars
data(cars)
cars_dippca <- clusterabilitytest(cars, "dip")
cars_dipdist <- clusterabilitytest(cars, "dip", reduction = "distance",
distance_standardize = "NONE")
cars_silvpca <- clusterabilitytest(cars, "silverman", s_setseed = 123)
cars_silvdist <- clusterabilitytest(cars, "silverman", reduction = "distance",
distance_standardize = "NONE", s_setseed = 123)
print(cars_dippca)
print(cars_dipdist)
print(cars_silvpca)
print(cars_silvdist)