clusterability {clusterability} | R Documentation |
clusterability: a package to perform tests of clusterability
Description
The clusterabilitytest
function can test for
clusterability of a dataset, and the print
function
to display output in the console. Below we include code to use with the provided example
datasets. Please see the clusterabilitytest
function for documentation on
available parameters.
Examples
# Normals1
data(normals1)
normals1 <- normals1[,-3]
norm1_dippca <- clusterabilitytest(normals1, "dip")
norm1_dipdist <- clusterabilitytest(normals1, "dip", distance_standardize = "NONE",
reduction = "distance")
norm1_silvpca <- clusterabilitytest(normals1, "silverman", s_setseed = 123)
norm1_silvdist <- clusterabilitytest(normals1, "silverman", distance_standardize = "NONE",
reduction = "distance", s_setseed = 123)
print(norm1_dippca)
print(norm1_dipdist)
print(norm1_silvpca)
print(norm1_silvdist)
# Normals2
data(normals2)
normals2 <- normals2[,-3]
norm2_dippca <-
clusterabilitytest(normals2, "dip")
norm2_dipdist <-
clusterabilitytest(normals2, "dip", reduction = "distance", distance_standardize = "NONE")
norm2_silvpca <- clusterabilitytest(normals2, "silverman", s_setseed = 123)
norm2_silvdist <- clusterabilitytest(normals2, "silverman", reduction = "distance",
distance_standardize = "NONE", s_setseed = 123)
print(norm2_dippca)
print(norm2_dipdist)
print(norm2_silvpca)
print(norm2_silvdist)
# Normals3
data(normals3)
normals3 <- normals3[,-3]
norm3_dippca <- clusterabilitytest(normals3, "dip")
norm3_dipdist <- clusterabilitytest(normals3, "dip", reduction = "distance",
distance_standardize = "NONE")
norm3_silvpca <- clusterabilitytest(normals3, "silverman", s_setseed = 123)
norm3_silvdist <- clusterabilitytest(normals3, "silverman", reduction = "distance",
distance_standardize = "NONE", s_setseed = 123)
print(norm3_dippca)
print(norm3_dipdist)
print(norm3_silvpca)
print(norm3_silvdist)
# Normals4
data(normals4)
normals4 <- normals4[,-4]
norm4_dippca <- clusterabilitytest(normals4, "dip")
norm4_dipdist <- clusterabilitytest(normals4, "dip", reduction = "distance",
distance_standardize = "NONE")
norm4_silvpca <- clusterabilitytest(normals4, "silverman", s_setseed = 123)
norm4_silvdist <- clusterabilitytest(normals4, "silverman", reduction = "distance",
distance_standardize = "NONE", s_setseed = 123)
print(norm4_dippca)
print(norm4_dipdist)
print(norm4_silvpca)
print(norm4_silvdist)
# Normals5
data(normals5)
normals5 <- normals5[,-4]
norm5_dippca <- clusterabilitytest(normals5, "dip")
norm5_dipdist <- clusterabilitytest(normals5, "dip", reduction = "distance",
distance_standardize = "NONE")
norm5_silvpca <- clusterabilitytest(normals5, "silverman", s_setseed = 123)
norm5_silvdist <- clusterabilitytest(normals5, "silverman", reduction = "distance",
distance_standardize = "NONE", s_setseed = 123)
print(norm5_dippca)
print(norm5_dipdist)
print(norm5_silvpca)
print(norm5_silvdist)
# iris
data(iris)
newiris <- iris[,c(1:4)]
iris_dippca <- clusterabilitytest(newiris, "dip")
iris_dipdist <- clusterabilitytest(newiris, "dip", reduction = "distance",
distance_standardize = "NONE")
iris_silvpca <- clusterabilitytest(newiris, "silverman", s_setseed = 123)
iris_silvdist <- clusterabilitytest(newiris, "silverman", reduction = "distance",
distance_standardize = "NONE", s_setseed = 123)
print(iris_dippca)
print(iris_dipdist)
print(iris_silvpca)
print(iris_silvdist)
# cars
data(cars)
cars_dippca <- clusterabilitytest(cars, "dip")
cars_dipdist <- clusterabilitytest(cars, "dip", reduction = "distance",
distance_standardize = "NONE")
cars_silvpca <- clusterabilitytest(cars, "silverman", s_setseed = 123)
cars_silvdist <- clusterabilitytest(cars, "silverman", reduction = "distance",
distance_standardize = "NONE", s_setseed = 123)
print(cars_dippca)
print(cars_dipdist)
print(cars_silvpca)
print(cars_silvdist)
[Package clusterability version 0.1.1.0 Index]